Speedier disease diagnosis thanks to new DNA nanotemplating analysis

(Nanowerk News) Researchers from McGill University and the Génome Québec Innovation Centre have achieved a technical breakthrough that should result in speedier diagnosis of cancer and various pre-natal conditions.

The key discovery, which is described online this week in the Proceedings of the National Academy of Sciences ("Convex lens-induced nanoscale templating"), lies in a new tool developed by Professors Sabrina Leslie and Walter Reisner of McGill's Physics Department and their collaborator Dr. Rob Sladek of the Génome Québec Innovation Centre. It allows researchers to load long strands of DNA into a tunable nanoscale imaging chamber in ways that maintain their structural identity and under conditions that are similar to those found in the human body.
Long strands of DNA can now be analyzed thanks to a new tool developed by McGill University and Génomique Québec. This technical breakthrough will potentially result in speedier diagnosis of cancer and various pre-natal conditions. (Image: Daniel Berard)

This newly developed "Convex Lens-Induced Confinement" (CLIC) will permit researchers to rapidly map large genomes while at the same time clearly identifying specific gene sequences from single cells with single-molecule resolution, a process that is critical to diagnosing diseases like cancer.

CLIC, the new tool, can sit on top of a standard inverted fluorescence microscope used in a university lab. The innovative aspect of CLIC lies in the fact that it allows strands of DNA to be loaded into the imaging chamber from above, a process which allows the strands of DNA to maintain their integrity. Existing tools used for genomic analysis rely on side-loading DNA under pressure into nanochannels in the imaging chamber, a practice that breaks the DNA molecules into small pieces, making it a challenge to reconstruct the genome.

"It's like squeezing many soft spaghetti noodles into long narrow tubes without breaking them," explains Prof. Leslie as she describes what it is like to use CLIC. "Once these long strands of DNA are gently squeezed down into nanochannels from a nanoscale bath above, they become effectively rigid which means that we can map positions along uniformly stretched strands of DNA, while holding them still. This means diagnostics can be performed quickly, one cell at a time, which is critical for diagnosing many pre-natal conditions and the onset of cancer."

Speedier disease diagnosis thanks to new DNA nanotemplating analysis http://www.nanowerk.com/nanotechnology-news/newsid=36789.php
"Current practices of genomic analysis typically require tens of thousands of cells worth of genomic material to obtain the information we need, but this new approach works with single cells," says Dr. Rob Sladek of the Génome Québec Innovation Centre. "CLIC will allow researchers to avoid having to spend time stitching together maps of entire genomes as we do under current techniques, and promises to make genomic analysis a much simpler and more efficient process."

"Nanoscale physics has so much to offer biomedicine and diagnostics," adds Prof. Leslie. "CLIC brings the nanoscale regime to the bench top, and genomics is just the beginning".

Source: McGill University

If you liked this article, please give it a quick review on reddit or StumbleUpon. Thanks!

Check out these other trending stories on Nanowerk:

Researchers achieve 'holy grail' of battery design: A stable lithium anode

Wearable graphene nanoelectronic sensors for disease monitoring

DNA sequencing reaches new lengths

Lithium-doped graphene approaches the limits of transparency and conductivity

Artificial retina: A graphene interface to the optical nerve

The black hole at the birth of the Universe

Artificial intelligence - Quick to recognize

Subscribe to a free copy of one of our daily Nanowerk Newsletter Email Digests with a compilation of all of the day's news.
Nanotube-polymer composites give immune cells a cancer-fighting boost
To bolster lithium battery life, add a little salt
Post: Aug 14, 2014

Nanotechnology helps solve mystery surrounding portrait of a mummy
Post: Aug 13, 2014

Can our computers continue to get smaller and more powerful?
Post: Aug 13, 2014

Optical extraction of hot carrier energy makes solar cells more efficient
Post: Aug 13, 2014

Nanopore material could enhance fast and accurate DNA sequencing
New test reveals purity of graphene
Post: Aug 13, 2014

Engineer solves an age-old conundrum and turns metal into glass
Custom-made carbon nanotubes
Post: Aug 13, 2014

Tattoo biobatteries produce power from sweat (w/video)
Flexible tapes from the nanoworld
Post: Aug 13, 2014

Nanoimprinted, bioinspired ultrahigh water pinning nanostructures
Post: Aug 13, 2014

Magnetic nanoparticles break the capacity barrier for antibody purification
Surface engineering - Diamonds in the crush
Post: Aug 13, 2014

Pentagonal nanorods show catalytic promise
'Trojan horse' nanoparticle treatment could beat brain tumors
Post: Aug 13, 2014

Making eco-friendly 'pre-fab' nanoparticles
Foam favorable for oil extraction (w/video)
Post: Aug 12, 2014

Copper nanofoam turns CO2 into useful chemicals
Post: Aug 12, 2014

...MORE NANOTECHNOLOGY RESEARCH NEWS

Subscribe to our daily newsletter
Free!

Follow @Nanowerk

Nanotechnology Home | Privacy statement | Terms of use | Contact us | What is Nanotechnology? | Sitemap | Advertise | RSS

The contents of this site are copyright ©2014 Nanowerk. All Rights Reserved

302 Moved