\[^{119}\text{Sn}\] transferred hyperfine fields in ErMn_\text{6-}_\text{x}Ga_\text{x}

Laura K. Perry,1 D. H. Ryan,1 and G. Venturini2

1Centre for the Physics of Materials and Physics Department, McGill University, Montréal, QC, H3A 2T8, Canada

2Laboratoire de Chimie du Solide Minéral, Université Henri Poincaré-Nancy I, associé au CNRS (UMR 7555), BP 239, 54506 Vandœuvre les Nancy Cedex, France

(Dated: January 5, 2007)

We present here the Sn anisotropic fields in ErMn_\text{6-}_\text{x}Ga_\text{0.11}, studied by \[^{119}\text{Sn}\] Mössbauer spectroscopy. The moments undergo a 90° spin reorientation from the \(ab\)-plane to \(c\)-axis on cooling through \(T_{sr} = 38(2)\) K. We find that the hyperfine field at Sn–2c is totally isotropic, while 5(1)% of \(B_{hf}\) at Sn–2d and more than 20% of \(B_{hf}\) at Sn–2e arise from anisotropic contributions.

I. INTRODUCTION

The hyperfine field \((B_{hf})\) observed at non-magnetic probe sites in magnetically ordered materials must arise from the effects of surrounding magnetic moments. The transfer process is generally assumed to be isotropic, driven by the magnitude of the neighbouring moments and their magnetic symmetry. However, where the bonding has a partially covalent character, the transferred hyperfine field includes an anisotropic contribution: \(B_{hf}\) also depends on the relative orientations of the moments and their connecting bonds. This anisotropic contribution can be a substantial fraction of the total transferred hyperfine field \([1, 2]\) and neglecting the anisotropic contribution to \(B_{hf}\) can lead to incorrect site assignments in multicomponent spectra. Attributing the component with the largest \(B_{hf}\) to the site with the most magnetic neighbours frequently fails to yield a correct interpretation of the observed spectrum.

To isolate the anisotropic contribution, we need to change the orientation of the surrounding magnetic moments without affecting their symmetry, positions or magnitudes. In many of the ferrimagnetic RMn_\text{6} compounds, the moments undergo a spontaneous temperature-driven reorientation in which they rotate from the \(ab\)-plane to the \(c\)-axis on cooling through \(T_{sr}\). The magnetic structures of these compounds are simple and provide three distinct Sn sites at which to study the anisotropic field. As the environment of each site is unique, the spin reorientation affects each Sn site differently. In TbMn_\text{6}Sn_\text{6-}_\text{x}Ga_\text{x} [3], the size ordering of hyperfine fields changes at \(T_{sr}\), so that a site assignment based solely on the magnitudes of \(B_{hf}\) does not yield a unique result. Site assignments in this system must be based on the electrostatic environment \((\Delta)\), which is unaffected by the reorientation except for a uniform change by a factor of \(-2\).

Although the moments in ErMn_\text{6}Sn_\text{6} do not undergo a spin reorientation transition, the transition can be forced with a small amount of Ga doping \((x_{crit} = 0.1)\), and \(T_{sr}\) can be driven as low as 36 K \([4]\) in TbMn_\text{6}Sn_\text{6-}_\text{x}Ga_\text{x}, Ga doping decreases \(T_{sr}\) by \(\sim 255\) K/Ga where the thermal variation of the moments is negligible, resulting in a clean and simple spin reorientation. We present here a \[^{119}\text{Sn}\] Mössbauer study of the transferred hyperfine fields in ErMn_\text{6}Sn_\text{6-}_\text{x}Ga_\text{0.11}. We find that on cooling through \(T_{sr} = 38(2)\) K, the quadrupole splitting changes by a factor of \(-2\), within error, for all three Sn sites, consistent with a full 90° rotation of the moments. From the change in \(B_{hf}\) through \(T_{sr}\), we determine the anisotropic contributions to \(B_{hf}\) at each Sn site. Remarkably, more than 20% of the hyperfine field at one site (Sn–2c) arises from anisotropic contributions.

II. EXPERIMENTAL METHODS

The ErMn_\text{6}Sn_\text{5.89}Ga_\text{0.11} single crystal was synthesized using a flux method similar to that previously reported in \([5]\). Stoichiometric amounts of ErMn_\text{6}Sn_\text{6} and elemental gallium (atomic ratio ErMn_\text{6}Sn_\text{31.5}Ga_\text{0.5}) were alloyed in an induction furnace. The resulting ingot was sealed under argon in a silica tube and annealed for two weeks at 1263 K. In RMn_\text{6}Sn_\text{6-}_\text{x}X_\text{x}, smaller R and \(x\) yield larger single crystals. ErMn_\text{6}Sn_\text{5.89}Ga_\text{0.11} grew as a large \((\sim 7\) mm \(\times 4\) mm \(\times 1\) mm), faceted, single crystal. Part of it was powdered for x-ray diffraction and Mössbauer spectroscopy. The compound is isotypic with the HfFe_\text{2}Gex type crystal structure \((P6/mmm\) space group\), with cell parameters \(a = 5.508(2)\) Å and \(c = 8.989(5)\) Å \([6]\). The crystal cleaves parallel to the \(c\)-axis so that an oriented piece could be cut for magnetometry.

III. RESULTS AND DISCUSSION

The Mn sublattice of the ternary ErMn_\text{6}Sn_\text{6} compound orders antiferromagnetically at \(T_N = 352\) K \([7]\). The material becomes ferrimagnetic when the Er sublattice order at 75 K. With a small amount of Ga substitution, the ErMn_\text{6}Sn_\text{5.89}Ga_\text{0.11} compound is ferrimagnetic over its whole ordered range below \(T_N = 372\) K. Figure 1 shows the magnetization \((T < 60\) K\) in an applied field of \(B_o = 1\) T, for \(B_o\) both parallel (left) and perpendicular (right) to the \(c\)-axis. The anomaly at \(T_{sr} = 39(1)\) K marks the spin reorientation transition. The width of the transition is less than 1 K, so the reorientation is an abrupt, well-defined transition. \(T_{sr}\) is in close agreement with that.
measured in the polycrystalline ErMn$_6$Sn$_5$Ga$_0.11$ compound ($T_{sr} = 36$ K) [4]. The saturation magnetization (15.59(2) J/T/kg) yields a Mn moment value of $\mu_{Mn} = 2.1(1) \mu_B$, close to that derived from neutron scattering in ErMn$_6$Sn$_5$ ($\mu_{Mn} = 2.21(5) \mu_B$) [8] (the assumed Er moment is $\mu_{Er} = 9\mu_B$).

In the HfFe$_5$Ge$_5$-type crystal structure, there are three Sn sites: Sn–2c (at the center of a trigonal rare earth plane), Sn–2d (with no rare earth neighbours) and Sn–2e (slightly offset from a hexagonal Mn$_6$ plane). Both Sn–2c and Sn–2d sit at the centers of Mn$_6$ hexagonal prisms. The 12 K Mössbauer pattern of ErMn$_6$Sn$_5$Ga$_0.11$ powder, shown in Figure 2, was fitted with three subspectra (one for each Sn site) and a central Sn impurity (spectral area 2.4%, isomer shift $\delta = 2.62(6)$ mm/s relative to CaSnO$_3$ at 295 K, and Debye temperature $\theta_D = 165(5)$ K). The areas of the three sextets were adjusted freely.

\[\Delta \text{ (mm/s)} \]

\begin{align*}
\text{ErMn}_6\text{Sn}_5\text{Ga}_0.11 & : 1.17(2) & 32.12(2) & 1.11(1) & 30.44(4) \\
\text{Sn–2c} & & & & \\
\text{Sn–2d} & 1.55(2) & 33.56(2) & 1.57(3) & 32.94(4) \\
\text{Sn–2e} & 0.03(2) & 15.54(2) & 0.16(1) & 13.81(2) \\
\end{align*}

The temperature dependence of B_{hf} at the three Sn sites is shown in Figure 3 (bottom right). On cooling through T_{sr}, B_{hf} decreases at Sn–2e, and increases at Sn–2d, while there is very little change at Sn–2c. We can determine the anisotropic field directly from these changes in B_{hf}, since it alone is changed by the reorientation.

FIG. 2: Mössbauer spectrum for ErMn$_6$Sn$_5$Ga$_0.11$ at 12 K.

In order to observe the anisotropic effects at each of the three Sn sites, they must be correctly identified. For $T < T_{sr}$, $B_{hf}(\text{Sn–2d}) > B_{hf}(\text{Sn–2c})$. Therefore, the site with the three Er neighbours experiences a smaller transferred hyperfine field than the site with none. However, as we will later show in Figure 3 (bottom right), the Sn–2c and Sn–2d fields exchange sequence on heating through T_{sr}, and thus the field ordering below T_{sr} differs from that above T_{sr}. Since we expect all moments in the structure to rotate by the same angle, the effect of the reorientation on the electrostatic environment is the same for each Sn site. Therefore, the site assignment is based on the sequence of quadrupole splittings, which is $|\Delta(\text{Sn–2d})| > |\Delta(\text{Sn–2c})| > |\Delta(\text{Sn–2e})|$ for any temperature (Figure 3, top right). The quadrupole splittings in TbMn$_6$Sn$_5$Ga$_0.11$ [3] served as a guide for the site assignment (Table I).

![Table I: Mössbauer parameters at 12 K in ErMn$_6$Sn$_5$Ga$_0.11$ and TbMn$_6$Sn$_5$Ga$_0.2$ [3].](image)

Figure 3 (left) shows the evolution of the Mössbauer spectra with increasing temperature. The subspectral areas were constrained to those determined at 12 K. The change in the spectra between 35 K and 40 K marks the spin reorientation transition, which is thus narrower than 5 K. Figure 3 (top right) shows the quadrupole splittings of the three Sn sites as functions of temperature, and $\Delta T < T_{sr} = -2 \Delta T > T_{sr}$ within error for all three Sn sites (Table II). The moments thus rotate by 90° on cooling through $T_{sr} = 38(2)$ K, from the ab–plane to the c–axis.

The temperature dependence of B_{hf} at the three Sn sites is shown in Figure 3 (bottom right). On cooling through T_{sr}, B_{hf} decreases at Sn–2e, and increases at Sn–2d, while there is very little change at Sn–2c. We can determine the anisotropic field directly from these changes in B_{hf}, since it alone is changed by the reorientation.

The temperature dependence of B_{hf} for $T > T_{sr}$ ($\mu \perp c$) was fitted to a Brillouin curve and extrapo-
TABLE II: Mössbauer parameters at 35 K and 40 K in ErMn$_6$Sn$_{5.89}$Ga$_{0.11}$.

<table>
<thead>
<tr>
<th>Site</th>
<th>Δ (mm/s)</th>
<th>B_{hf} (T)</th>
<th>Δ (mm/s)</th>
<th>B_{hf} (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sn–2e</td>
<td>1.11(2)</td>
<td>31.99(2)</td>
<td>−0.51(2)</td>
<td>31.87(2)</td>
</tr>
<tr>
<td>Sn–2d</td>
<td>1.54(3)</td>
<td>33.46(3)</td>
<td>−0.81(3)</td>
<td>30.33(2)</td>
</tr>
<tr>
<td>Sn–2c</td>
<td>0.07(2)</td>
<td>15.45(2)</td>
<td>−0.03(2)</td>
<td>20.53(2)</td>
</tr>
</tbody>
</table>

The signs of B_{hf} for a more detailed description of these constants. Since c plane to the T_{sr}. The difference $B_{hf}^{\mu || c}(T_{sr}) - B_{hf}^{\mu \perp c}(T_{sr})$ was tracked back to 0 K in order to determine the change in hyperfine field due to the reorientation at 0 K, δB_{hf}. This change in B_{hf} is the anisotropic field, B_{hf}^A, given in the second column of Table III for each Sn site.

The first neighbours for all three Sn sites are Mn atoms, with the Er atoms further away [9]. The anisotropic contribution to B_{hf} is thought to arise through partially covalent bonding between the magnetic atoms and the Sn [1, 2]. If we therefore ignore contributions to B_{hf} from second neighbour Er atoms (the observed fields here are comparable to those in alloys with non-magnetic atoms in the Er position [10]), the transferred hyperfine field at the Sn sites is given by [1]:

$$B_{hf} = \left(A_p \sum_{i=1}^{6} \mu_i \cdot u_i - \frac{A_p}{3} \sum_{i=1}^{6} \bar{\mu}_i \right) + A_s \sum_{i=1}^{6} \bar{\mu}_i$$

(1)

where u_i is the unit vector connecting each Sn atom to a specific Mn atom with moment $\bar{\mu}_i$, and A_p and A_s are the dipolar and contact fields due to a unit Mn moment. A_p is also referred to as the anisotropic constant. The last term in equation 1 is the isotropic contribution from the Mn shells around the Sn atoms, while the first two terms represent the anisotropic transferred hyperfine field. We will only consider the first term in equation 1, denoted A_1, as the second is independent of moment orientation. In the HfFe$_8$Ga$_{0.5}$-type crystal structure, the Mn–Sn bonds make angles of 35° (Sn–2c and Sn–2d) and 73° (Sn–2e) with the c–axis, and in ErMn$_6$Sn$_{5.89}$Ga$_{0.11}$, the moments are in the ab–plane for $T > T_{sr}$ and along c for $T < T_{sr}$. ΔA_1 is the change in A_1 due to a rotation from the ab–plane to the c–axis, and is listed in Table III (see [11] for a more detailed description of these constants). Since the signs of B_{hf}^A and $\Delta A_1/A_p$ agree for the three Sn sites, the anisotropic and isotropic contributions to B_{hf} must have the same sign. Finally, the anisotropic constant is calculated as $A_p = B_{hf}^A/\Delta A_1$ and values are given in Table III. From equation 1 we can determine the ratio A_p/A_s, and we find that the transferred hyperfine field at Sn–2c is totally isotropic, while B_{hf} at Sn–2d consists of a 5(1)% anisotropic contribution. By contrast, the anisotropic field constitutes more than 20% of the total transferred hyperfine field at Sn–2e.

The anisotropic constants at the Sn sites in ErMn$_6$Sn$_{5.89}$Ga$_{0.11}$ are significantly smaller than A_p measured in MnSn$_2$ ($B_{hf}^A = 4.9(2)$ T yielding $A_p = 2.1(1)$ μ_B [1]). Additional anisotropic contributions from Er–Sn bonding (not accounted for in equation 1) could possibly affect the apparent Mn–Sn anisotropic contribution in this system, leading to smaller derived anisotropic constants. An investigation into this possibility is currently underway in the YMn$_6$Sn$_{5.89}$Ga$_{0.11}$ system.

The significant effect of the anisotropic field on the total measured hyperfine field at each site emphasizes the importance of including this term when interpreting the observed spectra. For example, site assignments based simply on matching the sequence of fields with the number of magnetic neighbors (more neighboring moments implies bigger field) fails here as the Sn–2d and Sn–2c change order on cooling through $T_{sr} = 38(2)$ K. Furthermore, the Sn–2c site has the most magnetic neighbors (6 Mn and 3 Er) but has a smaller field (below T_{sr}) than the Sn–2d site which has only 6 Mn neighbors.

IV. CONCLUSIONS

Magnetization and 119Sn Mössbauer spectroscopy have been used to show that anisotropic contributions to the transferred hyperfine field in ErMn$_6$Sn$_{5.89}$Ga$_{0.11}$ can be as much as 20% of the total observed field.

[3] Laura K. Perry, D.H. Ryan, G. Venturini and J.M. Cado-
[6] The composition of the crystal was verified using a
SX50 electron probe at the Service Commun des Ondes Electroniques de l’Université de Nancy I-Henri Poincaré.

