Magnetic order and local spin correlations in $a-(\text{Fe}_{1-x}\text{Mn}_x)_{78}\text{Sn}_2\text{Si}_6\text{B}_{14}$

A. Kuprin, D. Wiarda,* and D. H. Ryan

Department of Physics and Centre for the Physics of Materials, McGill University, 3600 University Street, Montreal, Quebec, Canada H3A 2T8

(Received 2 March 1999)

^{57}Fe and ^{119}Sn Mössbauer spectroscopy has been used to study local spin correlations in site-frustrated $a-(\text{Fe}_{1-x}\text{Mn}_x)_{78}\text{Sn}_2\text{Si}_6\text{B}_{14}$ alloys. Comparison of total magnetization, hyperfine fields at the magnetic Fe, and nonmagnetic Sn sites shows that the Mn moments order antiparallel to the majority Fe moments and that the order established at the transverse spin freezing transition, T_{xy}, exhibits strong antiferromagnetic correlations in the plane perpendicular to the ferromagnetic axis. This result stands in strong contrast with the bond-frustrated case of $a-\text{Fe}_{100-\chi}\text{Zr}_\chi$, but is fully consistent with recent numerical simulations of short-ranged models. The clear difference between site- and bond-frustrated systems below T_c, demonstrates the importance of short-range interactions in real spin-glass systems.

INTRODUCTION

The infinite-ranged interactions implicit in mean-field spin-glass models make all forms of exchange frustration equivalent. However, real systems are generally dominated by shorter-ranged interactions, and for the case of first-neighbor-only exchange coupling, two distinct situations can be identified: (i) bond frustration and (ii) site frustration.

Bond frustration arises when each exchange bond to a moment’s nearest neighbors may be either positive [i.e., ferromagnetic (FM)] or negative [i.e., antiferromagnetic (AF)]. Perhaps the best example of this case is provided by iron-rich a-$\text{Fe}_{100-\chi}\text{Zr}_\chi$. Here the competing exchange interactions arise from the distance dependence of the direct Fe-Fe exchange coupling $J(r)$ with the distribution of nearest-neighbor distances inherent to the glass structure. With no frustration, the material is a ferromagnet, with infinite-ranged correlations and collinear order. As frustration is introduced, the order at $T=0$ becomes increasingly noncollinear and the magnetization is reduced. The ground state appears to be an xy spin glass coexisting with perpendicular ferromagnetic order (i.e., along the z axis). On heating from zero temperature, the xy spin glass melts at T_{xy} to form a collinear ferromagnet with substantial transverse degrees of freedom that fluctuate rapidly and time average to zero. Further heating takes the system to T_c where the ferromagnet undergoes a conventional three-dimensional (3D) Heisenberg phase transition to a paramagnetic state. As the degree of frustration increases, the features characteristic of ferromagnetic order decline (both T_c and magnetization fall) while spin-glass character becomes more pronounced (T_{xy} rises and irreversibilities at low temperatures become stronger). Eventually, T_c and T_{xy} meet, and further increase in frustration lead to a pure 3D spin glass (SG) with a transition temperature (T_{sg}) that is largely independent of the frustration level. The experimental observations are in quantitative agreement with Monte Carlo simulations of a bond-frustrated Heisenberg spin system.

Site frustration is achieved by introducing a dopant with AF coupling to all of its nearest neighbors so that the frustration is introduced site wise rather than bond wise. While the gross magnetic behavior is essentially the same as the bond-frustrated case (the system exhibits noncollinear order at low temperatures, there are two magnetic transitions at intermediate dopings and a spin glass at higher dopings), numerical simulations show that there are two striking differences. First, low levels of doping do not cause frustration. Isolated AF-coupled sites simply order antiparallel to the majority FM order, reducing the total magnetization, but not causing any noncollinearity. Frustration only appears when the dopant density is high enough for AF-AF pairs to occur. Second, the transverse correlations below T_{xy} exhibit short-range AF character rather than forming the xy spin glass observed in the bond frustrated case. Manganese-doped systems provide the most obvious experimental examples of site frustration, and behavior consistent with the numerical simulations is clearly seen. The amorphous (Fe,Mn)-G alloy series represent a highly studied example of site frustration. Typically they contain 75–80 at. % metals with the balance being made up from a mixture of glass-former elements (B, Al, C, Si, Sn, and P). Two magnetic transitions are observed beyond the threshold for the appearance of frustration, and these transitions merge at high Mn doping to yield a spin glass. Indeed, the strong similarities in the phase diagrams of $a-(\text{Fe}_2\text{Mn}_{1-x})_{75}\text{P}_{16}\text{B}_{6}\text{Al}_{13}$, $a-(\text{Fe}_2\text{Mn}_{1-x})_{75}\text{P}_{15}\text{C}_{10}$, $a-(\text{Fe}_2\text{Mn}_{1-x})_{77}\text{Si}_{10}\text{B}_{13}$, and $a-(\text{Fe}_{1-x}\text{Mn}_x)_{78}\text{Sn}_2\text{Si}_6\text{B}_{14}$ (present work) serves to emphasize that it is the frustration introduced by the Mn that dominates the magnetic response and that the properties of the glass-former mix are largely unimportant. Crystalline Fe$_3$Mn$_x$Si yields a very similar phase diagram, but also provides a direct confirmation of AF ordering perpendicular to the dominant FM order at T_{xy}. Polarized neutron scattering in an applied field on a single crystal of Fe$_3$Mn$_x$Si showed that the transverse spin components that order at T_{xy} are indeed orthogonal to the FM order established at T_c and they exhibit AF correlations, in full agreement with the predictions of the numerical simulations.

We present here a study of magnetization and transferred hyperfine field data for a series of $a-(\text{Fe}_{1-x}\text{Mn}_x)_{78}\text{Sn}_2\text{Si}_6\text{B}_{14}$ samples doped with ^{119}Sn in order to determine the nature of
the local spin correlations that develop at T_{xy}. The results show that the Mn moments order antiparallel to the FM order of the Fe moments, and that in the composition range where two transitions occur, the transverse correlations are indeed AF over the first two neighboring shells.

EXPERIMENTAL METHODS

The alloys were prepared by arc melting the appropriate ratio of pure elements (Fe: 99.95%, Mn: 99.9%, B 99.99% and Si 99.999% pure) with isotopically separated 119Sn under Ti-gettered argon to yield ~ 3 g ingots. Melt spinning was carried out under a partial pressure of helium onto a copper wheel at 55 m/s. Absence of crystallinity was confirmed using Cu-$K\alpha$ powder x-ray diffraction, thermogravimetric analysis (TGA) in a small field gradient, and room-temperature Mössbauer spectroscopy.

Magnetization (shown in Fig. 1) and susceptibility data were obtained on a commercial system in fields of up to 9 T over the temperature range 5–300 K. Curie temperatures were obtained from χ_{ac}, bulk magnetization, and Mössbauer spectroscopy for those samples that ordered below 300 K, and by TGA in the cases where T_c was above 300 K.

Mössbauer measurements were made on a constant acceleration spectrometer with a 1 GBq 57CoRh source for 57Fe and a 0.1 GBq Ba119mSnO$_3$ source for 119Sn. All spectra were calibrated using an α-Fe foil. Samples were mounted in a vibration-isolated closed-cycle fridge for spectra at temperatures down to 12 K. Representative 57Fe and 119Sn Mössbauer spectra for the alloys studied here are shown in Figs. 2 and 3, respectively. The spectra were fitted using an asymmetric Gaussian distribution of hyperfine fields with independent widths above and below the most probable field. This was found to be the simplest, stable, form that would reproduce the observed spectra. A linear correlation between B_{hf} and the isomer shift was included to account for the slight asymmetry in the spectra. A Gaussian distribution of quadrupole splittings was used to fit those spectra obtained above T_c. All isomer shifts quoted here are relative to α-Fe at RT.

BASIC CHARACTERIZATION

Magnetization at 5 K (Fig. 1) shows the evolution from square, readily saturated ferromagnetic behavior to highly curved with reduced saturation as the Mn content is increased and the system evolves from ferromagnet to spin glass. Magnetic transition temperatures (derived from both bulk magnetic, 57Fe Mössbauer measurements and TGA, and shown in Fig. 4) show the expected rapid decline in T_c and the appearance of T_{xy}. The results shown in Figs. 1 and 4 are in good agreement with the results of studies on other a-(Fe,Mn)-G systems.6,9,11,12

The average isomer shift $\langle \delta \rangle$ reflects the total density of s electrons at the site of a probe nucleus and thus provides information about electronic configuration and chemical bonding. On warming from 12 K to RT $\langle \delta \rangle$ dropped from 0.24±0.03 mm/s to 0.10±0.04 mm/s (57Fe) and $\langle \delta \rangle$ dropped from 1.78±0.02 mm/s to 1.70±0.04 mm/s (119Sn). This is consistent with the contribution from the second-order Doppler shift and in accordance with data for 57Fe in

[FIG. 1. Magnetization of a-(Fe$_{1-x}$Mn$_x$)$_{78}$Sn$_{32}$Si$_6$B$_{14}$ at 5 K as a function of applied magnetic induction.]

[FIG. 2. 57Fe Mössbauer spectra, with fits, of a-(Fe$_{1-x}$Mn$_x$)$_{78}$Sn$_{32}$Si$_6$B$_{14}$ measured at 12 K (left column) and various temperatures (right column) illustrate the magnetic state for different compositions: $x=0.000$, $x=0.107$ at RT (only a slight reduction of average hyperfine magnetic field), $x=0.235$, $x=0.320$ at 68 and 60 K, respectively (just above T_{xy}), $x=0.450$ at 50 K (complete collapse of magnetic hyperfine splitting above T_c).]
Magnetic order and local spin correlations

The average quadrupole splitting $\langle D \rangle$ at the 57Fe and 119Sn sites provide complementary information on the microscopic ordering of moments in these alloys. For the purpose of the present study it is natural to distinguish (see one of the first reviews on hyperfine interactions in iron-based alloys19) between the local contribution to the hyperfine field on 57Fe which arises from the total magnetic moment μ_{loc} of the probe iron atom, and nonlocal contributions, from surrounding magnetic atoms via conduction electron polarization. For 119Sn, which is nonmagnetic, the hyperfine field is transferred from moments associated with the magnetic atoms: both nearest neighbor and in more distant coordination spheres.$^{20-23}$ Mössbauer probe atoms with zero intrinsic magnetic moment (e.g., 197Au) have been used as an indicator of local correlations in the directions of moments on Fe atoms in Au$_{1-x}$Fe$_x$ spin-glass alloys.24 The approach was extended to the use of 119Sn for the same system in Ref. 25, and applied later to amorphous iron-rich metallic glasses.$^{26-30}$

The temperature dependence of $\langle B_{\text{hf}} \rangle$ for 57Fe and 119Sn,

\begin{table}[h]
\centering
\begin{tabular}{cccccccc}
\hline
\textbf{Composition} & x & 0.000 & 0.107 & 0.235 & 0.320 & 0.450 & ±
\hline
T_c (K) & & 677 & 597 & 284 & 136 & 31 & 2
T_{xy} (K) & & 49 & 52 & 31 & 2
$\langle B_{\text{hf}}^{57}\rangle$ (T) & & 27.9 & 22.8 & 15.8 & 12.5 & 6.1 & 0.2
$\langle B_{\text{hf}}^{119}\rangle$ (T) & & 27.9 & 22.8 & 15.8 & 12.5 & 6.1 & 0.2
$\langle \delta \rangle$ (mm/s) & & 0.24 & 0.23 & 0.18 & 0.18 & 0.16 & 0.02
$\langle \Delta \rangle$ (mm/s) & & 0.58 & 0.60 & 0.67 & 0.57 & 0.02
\hline
\end{tabular}
\caption{Basic characteristics derived from temperature dependences of the average hyperfine fields on 57Fe and 119Sn in a-(Fe$_{1-x}$Mn$_x$)$_{78}$Sn$_2$Si$_6$B$_{14}$ with different compositions: the Curie temperature T_c, the temperature of transverse spin freezing is T_{xy}, the average field in the direction of bulk magnetization $\langle B_{\text{hf}} \rangle$ at 12 K, the total average field $\langle B_{\text{hf}}^{\text{tot}} \rangle$ at 12 K, together with the average isomer shift $\langle \delta \rangle$ at 12 K, and the average quadrupole splitting $\langle \Delta \rangle$ at RT.}
\end{table}

FIG. 3. 119Sn Mössbauer spectra, with fits, of a-(Fe$_{1-x}$Mn$_x$)$_{78}$Sn$_2$Si$_6$B$_{14}$ measured at 12 K (left column) and temperatures shown in Fig. 2 (right column) illustrate the transfer of hyperfine fields from magnetic moments of surrounding Fe atoms to the nonmagnetic Sn probe.

119Sn in iron15 $\langle \delta \rangle_{\text{Fe}}$ also dropped slightly with increasing manganese content x with a fitted slope of 0.0015(2) mm s$^{-1}$ (at. %)$^{-1}$. This is consistent with a transfer of Fe-3d electrons to the Mn d band16,17 leading to a reduced shielding of 3s and 4s electrons.18 By contrast, $\langle \delta \rangle_{\text{Sn}}$ is essentially constant (data are presented in Table I), implying that the bonding of the tin atoms is not significantly affected by addition of manganese. The average quadrupole splitting $\langle \Delta \rangle$, which reflects departures from spherical symmetry in the local chemical environment, is not affected by Mn additions for either 57Fe or 119Sn. This observation, coupled with the weak effects on $\langle \delta \rangle$ points to the essentially unchanged electronic configuration of both tin and iron atoms with addition of manganese in the range of interest.

The average quadrupole splitting $\langle \Delta \rangle$ at the 57Fe and 119Sn sites provide complementary information on the microscopic ordering of moments in these alloys. For the purpose of the
shows a clear break in slope for all but the most Mn-rich and Mn-poor alloys. This behavior is expected, as it is only for intermediate Mn contents (and hence intermediate frustrations) that two magnetic transitions (\(T_c\) and \(T_{xy}\)) are predicted.\(^5\) The increase in \(B_{hf}\) with no increase in magnetization on cooling through \(T_{xy}\) is characteristic of transverse-spin freezing and reflects the ordering of spin components in the \(xy\) plane perpendicular to the FM order established parallel to, and defining, the \(z\) axis at \(T_c\).\(^{31}\) Starting with the \(^{57}\)Fe data, presented in Fig. 5, those alloys that exhibit no break in slope were fitted using a modified Brillouin function, while those with \(x = 0.235\) and \(x = 0.320\) exhibit a pronounced kink at the transverse-spin freezing temperature \(T_{xy}\); fits with a combined modified Brillouin function and linear term are shown below \(T_{xy}\) and with a modified Brillouin function only above \(T_{xy}\).

\[
\langle B_{hf}^a(T)\rangle^2 = \langle B_{hf}^{tot}(T)\rangle^2 - \langle B_{hf}^{xy}(T)\rangle^2.
\]

The behavior of the field at \(^{119}\)Sn sites shows similar compositional behavior, with kinks at approximately the same temperature seen for \(^{57}\)Fe. However, there is a strong deviation from a Brillouin-like course in the form of a much steeper decline in comparison with \(^{57}\)Fe (Fig. 6). This is well known in crystalline magnetic alloys, where the difference between the reduced hyperfine field and the reduced magnetization of the host is called the “temperature anomaly.” This anomaly introduces an additional uncertainty into the determination of \(\langle B_{hf}^a\rangle\) and hence of \(\langle B_{hf}^{xy}\rangle\) for \(^{119}\)Sn in samples that exhibit kinks in \(\langle B_{hf}^a\rangle(T)\). In these cases the value of \(\langle B_{hf}^c\rangle\) at \(T=0\) K was estimated from the value at

\[
T = 0.5 \ T_c \text{ where } B_{hf}(T) \sim 0.85 B_{hf}(0) \text{ according to experimental data on } ^{119}\text{Sn in iron ferromagnets}\(^{21,22}\).
\]

The results of fits to both the \(^{57}\)Fe and \(^{119}\)Sn data are given in Table I. The fitted fields are plotted vs \(x\) in Fig. 7. The phase diagram for this system (Fig. 4) is consistent with those of similar amorphous FeMn-G systems [e.g., \(a-(\text{Fe,Mn}_{1-x})_7\text{P}_{16}\text{B}_{6}\text{Al}_3\) (Ref. 10) and

![Graph showing average \(^{57}\)Fe and \(^{119}\)Sn hyperfine fields](Image)

![Phase diagram](Image)

![Concentration dependence of average hyperfine fields](Image)
MAGNETIC ORDER AND LOCAL SPIN CORRELATIONS

The primary purpose of the present study is to use the temperature and composition dependences of the 57Fe and 119Sn hyperfine fields to determine the nature of the ordering that occurs at T_{xy}. The simplest model involves assuming that both fields are dominated by short-range contributions. In such a model, the 57Fe field is assumed to be proportional to the local iron moment only, while in the case of 119Sn the field is attributed to a vector average over the moments in the first coordination shell (the absence of a local moment on the Sn is explicitly assumed here). This model has been applied to measurements of magnetic and nonmagnetic Mössbauer probes in several bond frustrated systems: 119Sn and 197Au in crystalline AuFe$_{19}$Sn$_2$ (Refs. 24 and 25) and 119Sn in amorphous Fe$_2$Zr$_2$Sn$_1$ (Ref. 26) and Fe$_{90-x}$Ni$_x$Zr$_2$Sn$_1$ with $x = 1$ and $x = 3$. In all cases the ratio:

$$R(T) = \langle B_{hf}^{\text{Fe}} \rangle / \langle B_{hf}^{\text{Sn}} \rangle$$

was found to be constant, or only weakly temperature dependent ($< 10^{-3}$ K$^{-1}$). Furthermore, in the AuFe alloys where a clear break in the temperature dependence of $\langle B_{hf}^{\text{Sn}} \rangle$ was observed for both the magnetic and non magnetic probes at T_{xy}, no break in the slope of $R(T)$ was present. The observed proportionality between intrinsic field on 57Fe and the transferred field on the nonmagnetic probe, leads, within this simple model, to the conclusion that the transverse components are aligned FM over first-neighbor distances. A result in consistent with the absence of an increase in magnetization below T_{xy}, and is in direct conflict with both mean-field calculations and numerical simulations which predict SG ordering of transverse components. However, the clearest indication that this simple model is inadequate comes from 119Sn-doped α-Fe$_{90}$Sc$_{10}$. This material is a spin glass with no net magnetization, so a zero, or at least very small, transferred field is expected at 119Sn and $R(T)$ should also be close to zero. However, $R(T)$ was found to be the same as it is in α-Fe and the simple model clearly needs to be improved.

$R(T)$ for the alloys studied here is shown in Fig. 8. Two features are immediately apparent: (i) there is a systematic increase in the ratio with increasing Mn content, which extends even to the $x = 0.450$ case that is a spin glass. This increase in $R(T)$ with x both above and below T_{xy} occurs even as the average magnetization clearly falls (see Fig. 1), and the 57Fe field drops by a factor of 4.5 (see Fig. 5). These results serve to underline the inadequacy of the simple model outlined above. (ii) There is a clear break in the slope of $R(T)$ for $x = 0.235$ and $x = 0.320$, the two alloys which exhibit transverse spin freezing. No such break has been observed in previous studies of bond frustrated alloys and this is strong evidence that the detailed nature of the ordering at T_{xy} in these site-frustrated materials differs from the bond-frustrated case.

ANALYSIS OF TRANSFERRED HYPERFINE FIELDS

For the purpose of the present study of the hyperfine fields at the Mössbauer probe sites we will use the approach of a magnetic polarization model (see detailed analysis in Ref. 34) which distinguishes between contributions local to the magnetic moment of Mössbauer probe atom and those transferred from magnetic moments on neighboring atoms. Both types of contribution act through the polarization of s-like electrons via exchange interactions with unpaired 3d electrons. The net polarization at the probe nucleus then induces a hyperfine field through the Fermi contact interaction.

Within this model, the average field at the nucleus of a magnetic probe atom (57Fe) in an amorphous magnetic alloy in which different magnetic species are uniformly distributed over coordination spheres, may be written as a sum of two components. The first is associated with the local magnetic moment of the probe, while the second reflects the contribution from surrounding magnetic atoms:

$$\langle B_{hf}(Fe) \rangle = A(\mu_{\text{loc}}) + B(\mu_1),$$

where A and B are constants, $\langle \mu_{\text{loc}} \rangle$ is the magnetic moment of the probe atom (which may be affected by the species present on neighboring sites) and μ_1 is the average moment of surrounding atoms, with the main contribution to it coming from the nearest-neighbors (1st NN). Unfortunately, consistent values for A and B are not directly available from the literature. The theoretical problem is challenging, and as yet unsolved. Comparisons are further complicated because the decomposition terms used (core, valence, conduction electron polarization, etc.) do not map uniquely onto Eq. (1). Also most work is on collinear magnetic systems, where the only real constraint is provided by the sum $A + B$, and separating the two contributions is complex. Theoretical estimates for A range from 10 T/μ_B for Fe-V sandwiches, 7–10 T/μ_B for FeCr and FeCo alloys to 3.7 T/μ_B for impurities in nickel. Experimental values include the widely used 15 T/μ_B (all local, no transferred field), 7.5 T/μ_B in (Fe,Mn)$_2$Al and 4 T/μ_B at 55Mn in the same alloy, 40T/μ_B to zero, due to a cancellation of two local terms, derived for Fe-Al alloys.

Since there is no consensus, we adopt the following procedure to determine A and B. The first term is entirely local and the prefactor A should not be affected by chemical or magnetic environments. Its value can be estimated from ex-
TABLE II. The average magnetic moments (in μ_B) used in and derived from the present analysis. The σ is the moment of the alloy per magnetic atom. (μ_{Fe}^{tot}) was obtained from the bulk value at $x = 0.00$, and all other moments were derived from the Mössbauer data (detailed description is given in the text). The superscript z denotes longitudinal components (in the direction of domain magnetization σ, or μ_{Fe}^{tot}) while xy denotes transverse components and tot is the total moment. The subscript 1 denotes average moment per atom of the first near-neighbour (NN) shell. The transverse components of the average moment on the 1$^\text{st}$ NN shell for the noncollinear alloys exhibiting spin-freezing transition (i.e., those with $x = 0.235$ and $x = 0.320$), and of the total average moment of the 1$^\text{st}$ NN shell for the complete spin glass ($x = 0.450$), were also calculated assuming random orientation of transverse components (μ_{Fe}^{tot}) and total moments (μ_{Fe}^{tot}) and (μ_{Sn}^{tot}), respectively. These values are shown at the bottom of the table. A negative sign means AF alignment with respect to the direction of the corresponding component of the Fe moment.

<table>
<thead>
<tr>
<th>x</th>
<th>0.000</th>
<th>0.107</th>
<th>0.235</th>
<th>0.320</th>
<th>0.450</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle \mu_1 \rangle$</td>
<td>2.19\pm0.01</td>
<td>1.69\pm0.01</td>
<td>1.07\pm0.01</td>
<td>0.59\pm0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>$\langle \mu_2 \rangle$</td>
<td>2.19\pm0.01</td>
<td>2.16\pm0.01</td>
<td>1.84\pm0.06</td>
<td>1.47\pm0.07</td>
<td></td>
</tr>
<tr>
<td>$\langle \mu_3 \rangle$</td>
<td>0.00</td>
<td>0.00</td>
<td>1.04\pm0.11</td>
<td>1.48\pm0.06</td>
<td></td>
</tr>
<tr>
<td>$\langle \mu_4 \rangle$</td>
<td>2.19\pm0.01</td>
<td>2.16\pm0.01</td>
<td>2.12\pm0.01</td>
<td>2.09\pm0.01</td>
<td>2.04\pm0.01</td>
</tr>
<tr>
<td>$\langle \mu_{Sn}^{\text{tot}} \rangle$</td>
<td>-3.47 ± 0.50</td>
<td>-3.57 ± 0.35</td>
<td>-3.43 ± 0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\langle \mu_{Sn}^{\text{transverse}} \rangle$</td>
<td>0.00</td>
<td>-2.39 ± 0.37</td>
<td>-2.25 ± 0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\langle \mu_{Sn}^{\text{longitudinal}} \rangle$</td>
<td>3.47\pm0.50</td>
<td>4.29\pm0.57</td>
<td>4.10\pm0.29</td>
<td>3.28\pm0.47</td>
<td></td>
</tr>
<tr>
<td>$\langle \mu_{Fe}^{\text{transverse}} \rangle$</td>
<td>2.89$\pm0.10^a$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\langle \mu_{Fe}^{\text{longitudinal}} \rangle$</td>
<td>2.50 ± 0.05</td>
<td>0.57±0.07</td>
<td>-0.10 ± 0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\langle \mu_{Fe}^{\text{random}} \rangle$</td>
<td>0.00</td>
<td>0.00</td>
<td>0.24±0.02</td>
<td>0.29±0.02</td>
<td></td>
</tr>
<tr>
<td>$\langle \mu_{Fe}^{\text{total}} \rangle$</td>
<td>2.19\pm0.01</td>
<td>1.56±0.05</td>
<td>0.62±0.06</td>
<td>0.31±0.03</td>
<td>0.35±0.01</td>
</tr>
<tr>
<td>$\langle \mu_{Sn}^{\text{random}} \rangle$</td>
<td></td>
<td>0.45 ± 0.06</td>
<td>0.52±0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\langle \mu_{Sn}^{\text{total}} \rangle$</td>
<td>0.80 ± 0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aObtained from measurements of bulk magnetization at 5 K extrapolated to zero field.
crosses the axis again around 3.8 Å. The corresponding dependence for 57Fe atoms in bcc alloys is quite similar, except that the negative contribution from nearest neighbors always dominates.

If we approximate the rather complex form described above by using two terms, the first (negative) term being due to moments in the first coordination shell, and the second (positive) term coming from all moments in more distant coordination shells, then we obtain a two-component model similar to that used for 57Fe above, except that the first term of Eq. (1) is explicitly zero (no 119Sn moment) and the second term is now broken up into the first coordination sphere and beyond. This two-component model has previously been used to explain the large temperature anomalies in the hyperfine field (due to a strong radial dependence of the negative contribution to the field), the correlation between temperature anomalies and thermal expansion of the lattice, and the strong pressure dependence of the field in metallic ferromagnets (Ref. 46 and references therein). Self-consistent calculations of the electronic structure of sp impurity atoms in ferromagnetic iron show a similar separation between the negative contribution to the field arising from bonding states and the positive one due to antibonding states, and also that the contribution from core polarization is small.47

This two-component model leads to the following expression for the average field at the 119Sn nucleus in our amorphous alloys:

$$
\langle B_{hf}(Sn) \rangle = -C(\mu_1) + D\sigma,
$$

where C and D are constants.48 In order to proceed, we need the sign of the hyperfine field at the 119Sn sites, a parameter that cannot be determined uniquely without applying an external field. However, it is reasonable to assume that for $x=0$ it is negative as it is in α-Fe where $B_{hf}(Sn) = -8.3$ T.21,15 Furthermore, an inspection of Figs. 1, 7(a), and 7(b) shows that the 119Sn field grows as the average alloy magnetization falls, suggesting that the negative term ($C(\mu_1)$) always dominates. Finally, the negative sign of the temperature anomaly apparent in Fig. 6 for $x=0.235$ requires that the field also be negative for this alloy.46 Assuming therefore that the 119Sn field is negative, and taking $D=20$ T/\(\mu_B\) from (Ref. 45), we derive $C=22.6\pm0.2$ T/\(\mu_B\) for the $x=0$ alloy. Taking the number of nearest-metal neighbors in our alloy to be close to 10 with separation $r \approx 2.57$ Å (estimated from experimental data on a-Fe$_{1-x}$B$_x$ system46), we obtain the value of partial contribution equal to 2.3 ± 0.2 T/\(\mu_B/\)neighbor, which is in rather good agreement with the value of 2.1 ± 0.1 T/\(\mu_B/\)neighbor for $r = 2.59$ Å derived from data on Sn-doped FeRh and Fe$_3$Ge.45

The volume expansion caused by introducing Mn, coupled with the significant radial dependence of the contribution from the first-neighbor shell [about 14 T μ_B^{-1} Å$^{-1}$ (Ref. 46)] means that B and C in Eqs. (1) and (2), respectively, must be composition dependent. A further correction should be introduced to account for a linear decrease in the total moment on Fe in accordance with the change of measured and calculated δ (Ref. 51) [upper estimate of which is \sim10% when half of Fe atoms are replaced by Mn (Ref. 11)]. This decrease in $\langle \mu_{Fe} \rangle$ also diminishes the contribution to A from s-d mixing, but the change is expected to be much less than 10% and will not be considered here. We emphasize that while these corrections are expected from the origins of the various components and serve to improve the overall consistency of the fits, they do not in any way affect the final conclusions.

DEDUCED MAGNETIC STRUCTURES

Figure 1 shows that there is a very large reduction in the magnetization on going from $x=0$ to $x=0.107$. If we assume that the magnetic structure remains collinear, then we deduce an average Mn moment $\langle \mu_{Mn} \rangle = -2.89(10) \mu_B$ indicating an antiparallel ordering of the Fe and Mn moments. This is fully consistent with the absence of a second magnetic transition and with model calculations for this composition,5 where the Mn atoms are expected to be surrounded by Fe atoms and Mn-Mn contacts will be absent. We can also estimate the Mn moment from the 57Fe hyperfine field. Equation (1) (written now for z components) gives $\langle \mu_z \rangle = 1.56(5) \mu_B$ and assuming additivity in the polarization of conduction electrons by Fe and Mn moments, the longitudinal component of Mn moment can be calculated from the following equation:

$$
\langle \mu_{z,Mn} \rangle = \left[(1-x)\langle \mu_{Fe} \rangle - \langle \mu_{z} \rangle \right] / x,
$$

where a positive value for $\langle \mu_{z,Mn} \rangle$ corresponds to AF Fe-Mn alignment. The deduced value of $\langle \mu_{z,Mn} \rangle = 3.47\pm0.50$ \(\mu_B\) is somewhat larger than, but consistent with the magnetization result. This consistency provides an additional check on our selection of values for A and B in Eq. (1).

Using $\langle \mu_z \rangle = 1.56(5) \mu_B$ in Eq. (2) (also written for z components) and assuming collinear order, gives $D = 16.7 \pm 0.9$ T/\(\mu_B\), which is about 16% smaller than the value for the alloy without Mn. This decrease reflects the assumption that the net contribution to the field from magnetic moments located at distances larger than 4 Å (i.e., from all shells following the 1st NN shell) can be written as a single term proportional to σ. However, the majority of this term comes from the 2nd NN shell, and the z component of its average moment will be closer to $\langle \mu_z \rangle$ than to σ, the former being about 8% smaller (data are summarized in Table II). Thus the apparent drop in D stems from a limitation of the model, however, a complete accounting for further shells would introduce unwarranted complications.

The alloys with higher Mn contents are expected to have noncollinear magnetic structures5 and both the $x=0.235$ and $x=0.320$ samples exhibit the two magnetic transitions characteristic of partially frustrated systems (see Figs. 4 and 5). Equations (1) and (2) will be true for the z components of the fields and moments, but when applied to $\langle B_{tot}^{Fe}(Fe) \rangle$ and $\langle B_{tot}^{Sn}(Sn) \rangle$, respectively they should be regarded as vector equations, i.e., they should involve a dependence on the angle (α) between vectors $\langle \mu_{Fe} \rangle$ and $\langle \mu_{z} \rangle$, and the angle (θ) between vector $\langle \mu_{z} \rangle$ and the z direction defined by the domain magnetization. Thus,

$$
\langle B_{tot}^{Fe}(Fe) \rangle^2 = A(\langle \mu_{Fe} \rangle^2) + B(\langle \mu_{z} \rangle^2) + C(\langle \mu_{z} \rangle \cos \alpha)
$$

and
\[[(B_{11}^{\text{tot}}(\text{Sn}))^2 = (C(\mu_1^{\text{tot}}))^2 + (D \sigma)^2 - 2CD(\mu_1^{\text{tot}})\sigma \cos \theta. \]

(5)

To proceed further, we need to assume a form for the correlations between the transverse-spin components. Two simple possibilities exist: collinear and random. The former can be further broken down into ferromagnetic and antiferromagnetic. FM alignment of transverse components would lead to a net increase in magnetization and can, in principle, be eliminated from consideration immediately. However, in what follows, we will retain this case in the interests of completeness. We deal first with the case of collinear ordering of the transverse components and then the random, or spin-glass case.

If we assume collinear alignment of the transverse components of the Fe and Mn moments, then the angles \(\alpha \) and \(\theta \) in Eqs. (4) and (5) are linked via \(\varphi_{Fe} \) the angle between the average Fe moment \(\langle \mu_1^{Fe} \rangle \) and the z direction:

\[\alpha = |\theta \pm \varphi_{Fe}|. \]

(6)

In the present model, the transverse field on \(^{119}\)Sn arises only from the transverse component of the moment on the 1st NN shell, and the net transverse component of the 2nd and following NN shells as well as that of bulk magnetization is assumed to average to zero. In this case, Eq. (2) reduces to

\[B_{11}^{\text{xy}}(\text{Sn}) = C(\mu_1^{\text{xy}}). \]

(7)

and \(\mu_1^{\text{xy}} \) can be determined directly from the data. The transverse field on \(^{57}\)Fe will depend on the transverse components of both the local Fe moment and that of the 1st NN shell. Allowing for either FM or AF alignment through the \(\pm \) sign in Eq. (6), Eq. (2) becomes

\[B_{11}^{\text{xy}}(\text{Fe}) = A(\mu_1^{\text{xy}}) = B(\mu_1^{\text{xy}}). \]

(8)

and allows us to find \(\mu_1^{\text{xy}} \) using \(\langle \mu_1^{\text{xy}} \rangle \) obtained from Eq. (7). We note that there is no defined direction within the xy plane and we need only to know the respective orientation of transverse components of the moments on Fe and Mn, and hence their absolute values, which, in the approximation of the present model, are connected by an equation analogous to Eq. (3):

\[\mu_1^{\text{xy}} = [(1-\alpha)(\mu_5^{\text{Fe}}) \pm |\mu_1^{\text{xy}}|]/x, \]

(9)

where a positive value for \(\mu_1^{\text{xy}} \) corresponds to AF alignment with respect to \(\mu_5^{\text{Fe}} \).

The two roots of Eq. (8) mean that two possible configurations of the moments on Fe and Mn can exist with the same values of \(\mu_1^{\text{xy}} \) and \(\mu_5^{\text{Fe}} \). Configurations with AF alignment of \(\mu_1^{\text{xy}} \) and \(\mu_5^{\text{Fe}} \) result in unrealistically large average total moments on Mn of about 6.3 \pm 0.4 \, \mu_B and thus will not be considered in the following discussion.

Knowing the values of \(\mu_5^{\text{Fe}} \) and \(\mu_1^{\text{tot}} \) we can determine \(\mu_1^{\text{Fe}} \). Then, using Eq. (1) written for z components (we assume that \(\mu_1^{\text{Fe}} \) points in the positive z direction) one can find the value and orientation of the longitudinal component of the 1st NN shell moment:

\[\mu_1^z = (B_1^{\text{tot}}(\text{Fe})/B(\mu_1^{\text{xy}})). \]

(10)

where a negative value for \(\mu_1^z \) corresponds to AF alignment with respect to \(\mu_5^{\text{Fe}} \). Finally, knowing \(\mu_1^z \), we can calculate the average value of the total moment of the first near-neighbors shell \(\mu_1^{\text{tot}} \).

For the alloy with \(x = 0.450 \) it is impossible to separate the longitudinal and transverse components of the moments, but the fact that the spontaneous bulk magnetization \(\sigma \) is zero [see Fig. 1 and (Refs. 11 and 52)] allows us to derive \(\mu_1^{\text{tot}} \) directly from Eq. (5). Its use in Eq. (4) then gives the value of \(\cos \alpha \) which can then be used to calculate the average moment on the Mn atoms using an equation analogous to Eqs. (3) and (9) which links average moments \(\mu_1^{\text{tot}} \) and \(\mu_1^{\text{tot}} \) and which now becomes a vector equation. We note that direct determination of the proportionality factor \(D \) is not possible for the complete spin-glass state, however, apart from this, we are able to determine all of the parameters for the present model. The results of this analysis are summarized in Table II.

If we repeat the analysis while assuming a random orientation of \(\mu_5^{\text{Mn}} \) and \(\mu_1^{\text{Mn}} \) for the alloys with \(x = 0.235 \) and \(x = 0.320 \), and random orientation of \(\mu_1^{\text{tot}} \) and \(\mu_1^{\text{tot}} \) for the complete spin glass with \(x = 0.450 \) we obtain values of \(\mu_1^{\text{xy}} \) and \(\mu_1^{\text{xy}} \) that are approximately twice as large as those obtained under the assumption of AF alignment. Furthermore, the assumption of random orientation of \(\mu_1^{\text{xy}} \) and \(\mu_1^{\text{xy}} \) in Eq. (8) yields very large values for \(\mu_1^{\text{xy}} \) (1.31 \pm 0.04 \, \mu_B and 1.81 \pm 0.04 \, \mu_B for \(x = 0.235 \) and \(x = 0.320 \), respectively). The latter value is almost the same as \(\mu_1^{\text{tot}} \) = 2.09 \pm 0.01 \, \mu_B. Statistical averaging of \(\mu_1^{\text{xy}} \) and \(\mu_1^{\text{xy}} \) with weights from Eq. (9) then leads to very large values for \(\mu_1^{\text{tot}} \) of 4.35 \pm 0.05 \, \mu_B and 3.92 \pm 0.05 \, \mu_B for \(x = 0.235 \) and \(x = 0.320 \), respectively. These in turn result in unrealistically large values for \(\mu_1^{\text{tot}} \) of 5.63 \pm 0.35 \, \mu_B and 5.20 \pm 0.25 \, \mu_B.

Thus we can immediately rule out the possibility of random orientations of either the transverse components or the total moments on Fe and Mn.

Introducing \(\varphi_{Mn} \) the angle between the average Mn moment and the \(\pm z \) direction (cf. \(\varphi_{Fe} \) defined above), we find that average total Fe and Mn moments deflect, respectively, from the \(+ z \) and \(- z \) directions in the opposite half-planes. At \(x = 0.235 \) their canting angles are close: \(\varphi_{Fe} = 29 \pm 4^\circ \) and \(\varphi_{Mn} = 34 \pm 5^\circ \) and weak frustration causes a rather small net canting of \(\mu_1^{\text{xy}} \) (\(\theta = 22 \pm 3^\circ \)). At higher frustration (\(x = 0.320 \)) the canting of the Fe moment increases (\(\varphi_{Fe} = 45 \pm 5^\circ \)), but remains the same for Mn (\(\varphi_{Mn} = 33 \pm 3^\circ \)). Nevertheless the frustration is now strong enough to cause \(\mu_1^z \) to point in the \(- z \) direction, \(\theta = 109 \pm 12^\circ \).

For the complete spin glass at \(x = 0.450 \), Eq. (4) gives cos \(\alpha \) less than -1, due mostly to uncertainties in the determination of \(B_{11}^{\text{tot}}(\text{Sn}) \) and \(\mu_1^{\text{tot}} \) discussed previously. However, we know from the two cases of moderate frustration discussed above, that the Fe and Mn moments are aligned almost completely AF, therefore it seems reasonable to expect this behavior to continue into the spin-glass regime, so that \(\mu_1^{\text{tot}} \) is oriented completely AF with respect to \(\mu_1^{\text{tot}} \). We will take cos \(\alpha \) to be -1 in calculations of the total Mn moment at \(x = 0.450 \).
FIG. 9. Normalized comparison of magnetic phase diagram for a-(Fe$_{1-x}$Mn$_x$)$_7$Sn$_2$Si$_6$B$_{14}$ (solid symbols) with that derived from Monte Carlo simulations on a simple cubic site disordered Heisenberg model with nearest-neighbor interactions (open symbols) (Ref. 5). Note the excellent agreement with the main predictions of the simulations. Note also that at $x=0.385$ a-(Fe$_{1-x}$Mn$_x$)$_7$Sn$_2$Si$_6$B$_{14}$ has already reached a spin-glass state. This discrepancy is probably caused by inequality of absolute values of coupling constants J_{FeFe}, J_{MnMn}, and J_{FeMn}, which were assumed to be $+1$, -1, and -1, respectively, in the numerical work.

The most important conclusion of the present analysis is that in partially frustrated alloys the transverse components of the Mn moments (μ_{Mn}^y) order AF with respect to the transverse components of the Fe moments (μ_{Fe}^y). This same result was obtained in recent Monte Carlo simulations on a 3D Heisenberg model with nearest-neighbor interactions on a simple cubic lattice, in which site disorder was introduced by randomly replacing a fraction f of FM sites by AF sites. It was shown that in this case frustration can occur only when f is high enough to produce AF-AF nearest pairs which on average start to appear when $f=1/NN$. Increased frustration led to an increase in both the noncollinearity, and T_{xy}, and a decrease in T_c. While the longitudinal components of the spins within each sublattice were ordered FM on average, the frozen transverse components exhibited short-range AF correlations. Comparison of the normalized transverse spin freezing temperatures (T_{xy}/T_c) in Fig. 9 shows that our experimental data are in good agreement with the magnetic phase diagram of the site-disordered model. The exception is the point at $x=0.385$ which suggests that the system reaches the spin-glass regime earlier than the numerical model. In view of the excellent agreement over the rest of the phase diagram, the most likely explanation for the discrepancy lies with the details of the exchange distribution.

The numerical model assumed a simple $\pm J$ exchange distribution, however, this is unlikely to be the case in a real system. Indeed, the steep decline of T_c with x apparent in Fig. 4 suggests that the AF Mn-Mn interactions are significantly stronger than the FM Fe-Fm interactions. Fitting the concentration dependence of T_c assuming a simple mixing model and temperature-independent exchange constants, gives the following values: $J_{FeFe} = 679 \pm 9$ K, $J_{MnMn} = 227 \pm 51$ K, and $J_{FeMn} = -1775 \pm 84$ K, or approximately: $|J_{MnMn}| = 5.2|J_{FeMn}| = 1.7|J_{FeFe}|$, which is in agreement with the ratio obtained for the Fe-Mn systems $|J_{MnMn}| = 6|J_{FeMn}| = 2|J_{FeFe}|$ from measurements of magnetic specific heat. This large variation in exchange strengths has a number of consequences. The existence of distinct Mn and Fe sublattices assumed in our analysis and the overall AF Fe-Mn orientations derived from our analysis both require $|J_{MnMn}|$ and $|J_{FeFe}|$ to be larger than $|J_{FeMn}|$. The greater size of $|J_{MnMn}|$ also leads to the frustration-independent canting angle of the average Mn moment (φ_{Mn} remains at $\sim 33^\circ$ with x rising from 0.235 to 0.320), while the weaker J_{FeFe} leads to a rapid increase in the canting angle of the Fe moments (φ_{Fe} increases from 29$^\circ$ to 45$^\circ$). Finally, the greater magnitude of J_{MnMn} means that misaligned Mn moments will have a greater effect on the surrounding moments and so explains why long-range order is lost at lower doping levels in the experimental system than in the numerical model where $\pm J$ was used (see Fig. 9).55

APPLICATION OF THE MODEL TO OTHER AMORPHOUS ALLOYS

It is interesting to apply the two-component model for hyperfine fields on 57Fe and 119Sn used in the present work to other iron-rich Fe glasses. The simplest will be to use it for alloys containing only one magnetic species, i.e., Fe where data on both $\langle B_{hf}(Fe) \rangle$ and $\langle B_{hf}(Sn) \rangle$ have been obtained on several partially and fully frustrated alloys. Estimates of the ratio $R(T)$ for the cases of collinear alignment of transverse components can be made from formulas obtained after trivial mathematical transformations of the equations for $\langle B_{hf}(Fe) \rangle$ and $\langle B_{hf}(Sn) \rangle$ (Eqs. (4) and (5), respectively) and by introducing the xy component of the Fe moment as a fraction q of the total moment assuming that $\langle \mu_{Fe}^x\rangle = q\langle \mu_{Fe}^x \rangle = \sigma$ in the case of FM alignment:

$$R_{FM}(T) = [(D-C)q/(1+q^2)]\langle A/2 + B \rangle,$$

and $\langle \mu_{Fe}^x \rangle = \langle \mu_{Fe}^{tot} \rangle = \sigma$ in the case of AF alignment:

$$R_{AF}(T) = [(D-C)q/(1-q^2)](q+(B^2+2AB)(1-q^2)).$$

We note that $R_{FM}(T)$ depends only on the field transfer coefficients, and not on any alloy parameters, while $R_{AF}(T)$ also depends on q, i.e., larger tilting reduces the influence of the surrounding moments due to cancellation among the transverse components and R_{AF} falls. For the case of spin-glass alignment of transverse components, we assume that $\langle \mu_{Fe}^x \rangle = \langle \mu_{Fe}^z \rangle = \sigma$, $\langle B_{hf}^{tot}(Fe) \rangle$ and $\langle B_{hf}^{tot}(Sn) \rangle$ can be obtained by statistical averaging of the xy components of the corresponding moments. We find that $R_{SG}(T)$ also includes a dependence on $\langle \mu_{Fe}^y \rangle$.

A study of a-Fe$_{27}$Zr$_3$Sn showed a temperature independent R, with no apparent anomaly at T_{xy}. This was interpreted as indicating locally FM alignment of the transverse spin components. In order to apply our model to this data, we need values for the field transfer coefficients A–D. A sets the local contribution to $\langle B_{hf}(Fe) \rangle$ from the Fe atom itself, and D gives the contribution to $\langle B_{hf}(Sn) \rangle$ from domain magnetization. Both have been found to be independent of the alloy system used, so we have taken the values from the a-FeMn alloys studied here, i.e., $A = -5.5$ T/μ_B, $D = 20$ T/μ_B. B was then estimated as -9.5 T/μ_B by applying Eq. (1) to the collinear a-Fe$_{90}$Zr$_{11}$ at 5 K where $\langle B_{hf}(Fe) \rangle = 23.4 \pm 0.2$ T.
and \(\mu_{Fe} = (\mu_1) = 1.56 \pm 0.04 \mu_B \). Local AF or SG alignment of \(xy\) components with \(q = 0.40\) [found for \(-Fe_2Zr_7Sn\) at 5 K (Ref. 26)] would result in \(B_{hf}(Fe) = 22.0 \pm 0.5\) T which is somewhat less than the experimental value of 23.7 \(\pm 0.2\) T, and hence both correlation forms would appear to be unlikely. Assuming local FM alignment of the \(xy\) components and taking \(R_{FM} = 0.227\) [the average of experimental data obtained for \(-Fe_2Zr_7Sn\) in the temperature range from 5 K to 90 K (Ref. 26)], yields \(C = 23.4\) T/\(\mu_B\) [from Eq. (11)]. The two-component model combined with the assumption of local FM alignment of \(xy\) components then predicts the experimentally observed \(T_{xy}\) temperature-independent \(R\). By contrast, local AF alignment of \(xy\) components leads to a \(-2\%\) drop of \(R_{max}(T)\) below \(T_{xy}\), while local SG alignment leads to a \(-24\%\) increase in \(R_{SG}(T)\). Thus, combining the measured fields with the observed dependence of \(R(T)\) we find that the experimental data on the bond-frustrated \(-Fe_100-xZr_x\) alloys are consistent only with local FM alignment of the transverse-spin components.

Substitution of Fe by Ni in \(-Fe_{90-x}Ni_x Zr_xSn\) leads to a \(10\%\) increase in \(B_{hf}(Fe)\) measured at 12 K on going from \(x = 0\) to \(x = 3\). This change is due to increased collinearity (reflected by a narrowing of the hyperfine field distribution and increased \(T_c\)) and an increase in the Fe moment (reflected by increased magnetization). On going from \(x = 1\) to \(x = 3\), \(R(T)\) decreases from \(-0.235\) to \(-0.223\) while \(B_{hf}(Sn)\) does not change. This behavior cannot be appropriately accounted for in the one component model which would predict an increase in \(B_{hf}(Sn)\) caused by increases in collinearity and Fe moment. The two-component model, however, predicts a greatly reduced effect. For locally FM correlations, \(\mu^\text{tot}_{Fe}\) and \(\sigma\) will scale together as the Fe moment increases, and Eq. (2) shows that \(B_{hf}(Sn)\) is then proportional to \((D - C)\sigma\). The coefficients are close in size, greatly reducing the effects of an Fe moment increase. Equation (11) further shows that changes in collinearity do not affect \(R\). The net effect of the Fe moment increase on adding Ni is, therefore, a larger \(B_{hf}(Fe)\) at constant \(B_{hf}(Sn)\) and so \(R\) decreases.

Finally, we consider the case of fully frustrated \(-Fe_90Sc_5Sn_1\) which exhibits a single transition to an isotropic spin-glass state. \(-FeSc\) and \(-FeZr\) have many similarities including comparable compositions, and atomic radii (1.60 \(\AA\) for Zr and 1.62 \(\AA\) for Sc and Sn). The low temperature value of \(B_{hf}(Fe)\) for \(-Fe_90Sc_10\) (and \(-Fe_90Sc_5Sn_1\)) is 22.9 T, \(50,29\) very close to the essentially composition-, and hence frustration-, independent 23.4 T found in \(-Fe_{100-x}Zr_x\). \(5,36\) The observation that \(B_{hf}(Fe)\) remains constant in \(-Fe_{100-x}Zr_x\) despite a 30% reduction in \(\sigma\) is only consistent with locally FM correlated transverse components. Any other form would lead to some cancellation and a drop in \(B_{hf}(Fe)\). In view of the many similarities between the \(-FeSc\) and \(-FeZr\) systems, it seems reasonable to expect that the correlations will continue to be FM as we cross into the spin glass. These expectations can be examined in more detail using the two-component hyperfine field model for \(-Fe_90Sc_5Sn_1\). \(\langle \mu_1 \rangle = 0.22 \pm 0.02\) \(\mu_B\) may be directly obtained from Eq. (5) (the second term is zero, as the average magnetization \(\sigma\) is zero, and \(\langle B_{hf}(Sn)\rangle = 5.1 \pm 0.2\) T was measured for \(-Fe_90Sc_5Sn_1\) at 12 K). This result is about half the value of \(\langle \mu_{Fe}^{tot} \rangle = 0.41 \pm 0.05\) \(\mu_B\) obtained by isotropic statistical averaging of 12 vectors \(\langle \mu_{Fe}^{tot} \rangle = 1.55 \pm 0.05\) \(\mu_B\) [using the moment obtained for the collinear \(-Fe_90Sc_5Zr_{11}\) (Ref. 3)]. This assumption of random orientation also leads to a simulated value for \(B_{hf}(Fe)\) of 9.1 \(\pm 0.5\) T (isotopic statistical average of the vector \(A(\mu_{Fe}^{tot})\) and resulting isotropic statistical average of 12 vectors \(B(\mu_{Fe}^{tot})\) which is again less than half of the value measured experimentally. Therefore, we can conclude that the absence of a bulk magnetization \(\sigma\) does not translate into a fully random orientation of the moment vectors over the 1st NN shell.

CONCLUSIONS

The magnetic properties of site-frustrated \((-Fe_1-xMn_x)_{78}Sn_{2}Si_6B_{14}\) have been studied as functions of temperature and Mn concentration. \(x\), specifically, the detailed nature of the short-range correlations that develop below \(T_{xy}\) have been investigated using magnetic and nonmagnetic Mössbauer probes. At low \(x\), the Mn moments couple AF with respect to the majority Fe moments and the alloy retains its collinear structure. Once \(x\) is large enough for Mn-Mn pairs to occur, exchange frustration develops and the magnetic order at \(T = 0\) becomes noncollinear. On warming, the transverse components that lead to the noncollinearity melt at a well-defined temperature \(T_{xy}\), and the order is then collinear until it is lost on reaching \(T_c\). The transverse components in this site-frustrated system were shown to exhibit AF correlations below \(T_{xy}\), in strong contrast to the \(xy\) spin-glass order predicted for bond-frustrated materials. Furthermore, both the longitudinal \(z\), and transverse \(xy\) components of the Fe moments are oriented antiparallel to their Mn counterparts. Indeed, this antiparallel tendency is so strong that it persists even in the fully frustrated \(x = 0.450\) alloy. The general magnetic behavior as well as the AF character of the short-range correlations in the \(xy\) components are fully consistent with the results of Monte Carlo simulations on a three-dimensional site-disordered Heisenberg model with nearest-neighbor interactions.

We have shown that it is essential to use a two-component model in order to obtain a consistent description of the hyperfine fields at both magnetic and nonmagnetic Mössbauer probes. Such a model considers the effects of both the local Fe moment and the average moment on the 1st NN shell on the hyperfine field at magnetic \(57Fe\) sites, and the effects of both 1st NN and more distant shells on the hyperfine field at nonmagnetic \(119Sn\) sites. The coefficients \(A, B, C,\) and \(D\) used here, were derived from a variety of experimental systems as consistent theoretical values are not available. Development of this model has allowed us to complete a rigorous analysis of the transferred hyperfine fields in \(-Fe_1-xMn_x)_{78}Sn_{2}Si_6B_{14}\) and so determine the nature of the local correlations among transverse components below \(T_{xy}\). The conclusions of this analysis are robust, and while substantial changes in the field-transfer coefficients in Eqs. (1) and (2) degrade the fit quality and lead to variation in the Fe and Mn moments, they do not change the final result—antiparallel orientation of the Fe and Mn moments.

We have also applied the two-component model to a
range of bond-frustrated alloys, and shown that in this case, the transverse correlations below T_s, are strongly ferromagnetic in nature, at least on a first-neighbor length scale. In combination with bulk magnetization data, we can easily distinguish between FM, AF, or SG short-range transverse correlations on a local scale.

ACKNOWLEDGMENTS

This work was supported by grants from the Natural Sciences and Engineering Research Council of Canada and Fonds pour la formation de chercheurs et l’aide à la recherche, Québec.

*Present Address: WIARDA, 7520 Wickam Rd., Knoxville, TN 37931.

48. We explicitly include the $-$ sign in this equation to emphasize the opposite signs of the contributions to the 119Sn hyperfine field. This choice makes both C and D in Eq. (2) positive. We recognize that the hyperfine field at both the 57Fe and 119Sn sites is in fact negative, but omit the many $-$ signs for clarity.

55. The onset of T_s depends only on the presence of Mn-Mn pairs and so is unaffected by relative exchange strengths.