Photons and Di-Leptons from Hybrid Models

Marcus Bleicher
Institut für Theoretische Physik
Frankfurt Institute for Advanced Studies
Goethe Universität Frankfurt
Germany

This model can be downloaded from www.urqmd.org
Best birthday wishes also from
- Horst
- Dirk
- and Carsten
Thanks to

- Hannah Petersen (Hybrid model) → now at Duke
- Jan Steinheimer (Hybrid / EoS) → now at LBL
- Bjoern Baeuchle (Photons)
- Elvira Santini (Di-Leptons)
- Jochen Gerhard (GPU code)
Outline

• Motivation
• Model
• Photons
• Dileptons
• Conclusions
Present Hybrid Approaches

(3+1)dim. hydrodynamics with fluctuationg initial conditions, continuous emission or afterburner:

- Integrated (open source) UrQMD 3.3
- Hadronic dissipative effects on elliptic flow in ultrarelativistic heavy-ion collisions.
- 3-D hydro + cascade model at RHIC.
- Results On Transverse Mass Spectra Obtained With Nexspherio
- EPOS+Hydro+UrQMD at LHC
- MUSIC@RHIC and LHC
 B. Schenke, S. Jeon, C. Gale, …
Hybrid Approach

- Essential to draw conclusions from final state particle distributions about initially created medium
- The idea here: Fix the initial state and freeze-out
 - learn something about the EoS and the effect of viscous dynamics

1) Non-equilibrium initial conditions via UrQMD
2) Hydrodynamic evolution or Transport calculation
3) Freeze-out via hadronic cascade (UrQMD)

The UrQMD transport approach

UrQMD = Ultra-relativistic Quantum Molecular Dynamics

- **Initialisation:**

 Nucleons are set according to a Woods-Saxon distribution with randomly chosen momenta \(p_i < p_F \)

- **Propagation and Interaction:**

 Rel. Boltzmann equation
 \[
 (p^\mu \partial_\mu) f = I_{\text{coll}}
 \]

 Collision criterium
 \[
 d_{\text{min}} \leq d_0 = \sqrt{\frac{\sigma_{\text{tot}}}{\pi}}
 \]

- **Final state:**

 all particles with their final positions and momenta

Very successful in describing different observables in a broad energy range

But: modeling of the phase transition and hadronization not yet possible

Marcus Bleicher, JoeFest, Montreal 2012
Initial State

- Contracted nuclei have passed through each other
 \[t_{\text{start}} = \frac{2R}{\gamma v} \]
 - Energy is deposited
 - Baryon currents have separated
- Energy-, momentum- and baryon number densities are mapped onto the hydro grid
- Event-by-event fluctuations are taken into account
- Spectators are propagated separately in the cascade

(J. Steinheimer et al., PRC 77, 034901, 2008)

\(E_{\text{lab}} = 40 \text{ AGeV} \)
\(b = 0 \text{ fm} \)
Equations of State

Ideal relativistic one fluid dynamics:

\[\partial_\mu T^{\mu\nu} = 0 \quad \text{and} \quad \partial_\mu (n u^\mu) = 0 \]

- **HG:** Hadron gas including the same degrees of freedom as in UrQMD (all hadrons with masses up to 2.2 GeV)
- **CH:** Chiral EoS from SU(3) hadronic Lagrangian with first order transition and critical endpoint
- **BM:** Bag Model EoS with a strong first order phase transition between QGP and hadronic phase

D. Rischke et al., NPA 595, 346, 1995,
D. Zschiesche et al., PLB 547, 7, 2002
Papazoglou et al., PRC 59, 411, 1999
Phase diagram for the chiral EoS

- QGP fraction lambda
- Chiral PT
- Deconfinement PT
- CEP
- Parameters fixed to lQCD

- Full line: Deconfinement
- Dashed line: Chiral PT

1) Transition from hydro to transport when $\varepsilon < 730$ MeV/fm3 ($\approx 5 \times \varepsilon_0$) in all cells of one transverse slice (Gradual freeze-out, GF)

→ similar to an iso-eigentime criterion

→ Different from event-to-event

- Particle distributions are generated according to the Cooper-Frye formula

$$E \frac{dN}{d^3p} = \int_{\sigma} f(x, p)p^\mu d\sigma_\mu$$

with boosted Fermi or Bose distributions $f(x, p)$ including μ_B and μ_S

- Rescatterings and final decays calculated via hadronic cascade (UrQMD)
Final State Interactions (after Hydro)
Recent developments in SHASTA

- Idea: use graphic cards to speed-up computation
- done with
 Jochen Gerhard, Volker Lindenstruth

Converting legacy code to modern architecture

- SHASTA code in FORTRAN was used as part of UrQMD
 - Resembling physics of shock waves, conservation laws, ultra relativistic effects.
- Execution was slowly, hindering the creation of significant statistics.
The new C++ Code

• The Code was redesigned in C++ to allow a better maintenance.
 – Class structure and clean encapsulation allow for integration of new ideas without rewriting all the code

• Also performance optimization:
 – tripled execution speed
 – Used 80% less memory
Making it even faster

- With C++ Version as base redesign to OpenCL to work on GPGPUs
- If no GPGPUs are present usage on Multicore CPU. (With exact same code!)
- Tremendous speedup: up to a factor of 160 for 3D simulation.
Realistic 3+1d simulation

- 3+1d Simulation is working
- 100 Timesteps in FORTRAN ~60 min.
- 100 Timesteps in C++ Version ~15 min.
- 100 Timesteps in OpenCL Version ~30 sec.
- Factor 160 speed-up!

J. Gerhard, M. Bleicher, V. Lindenstruth, arXiv:1206.0919
Bremsstrahlung from a Microscopic Model of Relativistic Heavy Ion Collisions

S.M.H. Wong1, M. Belkacem1, J.I. Kapusta1,
S.A. Bass2, M. Bleicher3*, H. Stöcker4

1School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
2National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, E. Lansing, MI 48824, USA
3Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
4Institut für Theoretische Physik, Robert-Mayer-Strasse 10, Johann Wolfgang Goethe Universität, D-60054 Frankfurt am Main, Germany
Why direct photons?

- Sensitivity to scattering rate in the fireball
- Sensitivity to the constituents of the matter
- Hadronic products rescatter → information lost
- Photons keep information!

Caveat:
Many decay photons

Direct Photons…
…all photons which do not come from hadronic decays
- thermal and pre-equilibrium photons calculated
- Prompt photons irrelevant at FAIR
Photon sources

- **Transport**

 \[\pi^\pm \pi^\mp \rightarrow \gamma \rho^0, \]

 \[\pi^\pm \pi^0 \rightarrow \gamma \rho^\pm, \]

 \[\pi^\pm \rho^0 \rightarrow \gamma \pi^\pm, \]

 \[\pi^\pm \rho^\mp \rightarrow \gamma \pi^0, \]

 \[\pi^0 \rho^\pm \rightarrow \gamma \pi^\pm, \]

 \[\pi^\pm \pi^\mp \rightarrow \gamma \gamma. \]

- **Hydrodynamics**

 \[\pi \pi \rightarrow \gamma \rho, \]

 \[\pi \rho \rightarrow \gamma \pi, \]

 \[\pi K^* \rightarrow \gamma K, \]

 \[\pi K \rightarrow \gamma K^*, \]

 \[\rho K \rightarrow \gamma K, \]

 \[K^* K \rightarrow \gamma \pi. \]

Rates: hadronic and partonic

- Hadronic rate parametrization:

\[E \frac{dR}{d^3p} = A \exp \left(\frac{B}{(2ET)^C} - D \frac{E}{T} \right) \]

- QGP rate:

\[E \frac{dR}{d^3p} = \sum_{i=1}^{N_f} q_i^2 \frac{\alpha_{em} \alpha_S}{2\pi^2} T^2 \frac{1}{e^x + 1} \left(\ln \left(\frac{\sqrt{3}}{g} \right) + \frac{1}{2} \ln (2x) + C_{22}(x) + C_{\text{brems}}(x) + C_{\text{ann}}(x) \right) \]

P. Arnold, G. Moore, L. Yaffe, JHEP 0112 (2001)009

note that only the \(\pi \pi \rightarrow \gamma \), and the \(\pi \rho \rightarrow \gamma \) are included in both sets
ρ mass treatment

- ρ may be created on pole mass (m_ρ fixed) or with Breit-Wigner-distribution (m_ρ Breit-Wigner).
- Effect on spectra small

fig: Bäuchle, MB, PRC 81 (2010) 044904
Comparison rates: Transport vs. Hydro

- UrQMD in a box, temperature fixed → extract rates
- Comparison with thermal rates: Good agreement!
Transport vs hydro

Not much difference if same sources are taken into account

NB. here one is sensitive to collision rates!
Comparison to data

Comparisons

Hybrid, QGP: Channels

Bjoern Bauechle, MB, PRC (2010)
Direct Photon spectra at SPS

- Partonic EoS hit data without pQCD, Hadronic EoS hit data with pQCD
- Treatment of pQCD unclear → no definite answer about QGP
Direct Photon spectra at RHIC

- Clear separation hadronic vs. partonic
- Partonic calc. fit data
- Reasons for missing contributions: Late equilibration, hadronic treatment of early times?

Data points from:
PHENIX, PRC 81 (2010) 034911
fig: Bäuchle, MB, PRC 82 (2010) 064901
Comparison to other calculations

- Similar results by others, however
- no adjustment of parameters
- no freedom on T_0, tau_0
- Consistency with hadron spectra
Direct Photon spectra at FAIR

- No prompt photon (pQCD-) contributions
- clear separation between hadronic and partonic EoS
- yield rather low (factor 10 less compared to SPS)
Channels: Hadronic/Partonic/pQCD

- Partonic emission enhanced w.r.t. hadronic emission
Cascade calculation
Average emission time \approx 8 \text{fm}
Above $p_t = 2.5 \text{ GeV}$, early times dominate

Bäuchle, MB, PLB 695 (2011) 489-494
Virtual Photons (DiLeptons)

\[
\frac{d^8 N_{\rho\rightarrow ll}}{d^4 x d^4 q} = - \frac{\alpha^2 m_\rho^4}{\pi^3 g_\rho^2} \frac{L(M^2)}{M^2} \frac{f_B(q_0; T)}{I_m} D_{\rho}(M, q; T, \mu_B)
\]

Self energy obtained from V. Eletsky, M. Belkacem, P. Ellis, J. Kapusta, Phys. Rev. C64 (2001) 035202

Transverse Dynamics of the Lepton pairs

- Increase of effective temperature
- Dominance of QGP at $M=1$ GeV

Marcus Bleicher, JoeFest, Montreal 2012
Conclusions

- Integrated, 3+1d, fast hybrid model with fluctuating initial conditions
- Allows for good understanding of Photon and DiLepton spectra
- 'No' special adjustment for different probes or energies!

www.urqmd.org