The Weather and Climate: Emergent Laws and Multifractal Cascades

Shaun Lovejoy
McGill University, Montréal

Daniel Schertzer
École Nationale des Ponts et Chaussées, Paris
Contents

Preface ix
Acknowledgments xiii
Acronyms and abbreviations xiv

1 Introduction 1
1.1 The new synthesis 1
1.2 The Golden Age, resolution, revolution and paradox: an up-to-date empirical tour of atmospheric variability 4
1.3 The phenomenological fallacy 18
2 Classical turbulence, modern evidence 21
2.1 Complexity or simplicity? Richardson’s dreams and the emergence of the laws of turbulence 21
2.2 The equations of the atmosphere and their scale symmetries 25
2.3 Extensions to passive scalars, to the atmospheric primitive equations 28
2.4 Classical isotropic 3D turbulence phenomenology: Kolmogorov turbulence and energy cascades 31
2.5 The special case of 2D turbulence 36
2.6 Atmospheric extensions 37
2.7 Summary of emergent laws in Chapter 2 51

Appendix 2A: Spectral analysis in arbitrary dimensions 53
Appendix 2B: Cascade phenomenology and spectral analysis 55
Appendix 2C: Spectral transfers 58

3 Scale-by-scale simplicity: an introduction to multiplicative cascades 59
3.1 Cascades as conceptual models 59
3.2 Discrete-in-scale multiplicative cascades 61
3.3 Universal multifractal processes 76

3.4 Summary of emergent laws in Chapter 3 81

Appendix 3A: The convexity of $K(q)$ 82
Empirical analysis of cascades in the horizontal 83
4.1 The empirical estimation of turbulent fluxes in both dissipation and scaling ranges 83
4.2 The scaling properties of reanalyses 86
4.3 The cascade structure of in-situ aircraft measurements: wind, temperature and humidity fields 96
4.4 The cascade structure of precipitation 100
4.5 The scaling of atmospheric forcings and boundary conditions 106
4.6 Summary of emergent laws in Chapter 4 109

Appendix 4A: Trace moments of quasi-Gaussian processes 111

Cascades, dimensions and codimensions 113
5.1 Multifractals and the codimension function 113
5.2 The codimension multifractal formalism 115
5.3 Divergence of statistical moments and extremes 125
5.4 Continuous-in-scale multifractal modelling 141
5.5 Wavelets and fluctuations: structure functions and other data analysis techniques 149
5.6 Summary of emergent laws in Chapter 5 162
Appendix 5A: Divergence of high-order statistical moments 165
Appendix 5B: Continuous-in-scale cascades: the autocorrelation and finite size effects 167
Appendix 5C: A Mathematica code for causal and acausal multifractal simulations 172
Appendix 5D: Multifractal simulations on a sphere 173
Appendix 5E: Tendency, poor man’s and Haar structure functions and the MFDFA technique 174

6 Vertical stratification and anisotropic scaling 181
6.1 Models of vertical stratification: local, trivial and scaling anisotropy 181
6.2 The Brunt–Väisälä frequency and the classical stable layer approach to stratification 195
6.3 The implications of anisotropic scaling for aircraft turbulence measurements 199
6.4 Horizontal and vertical analyses of dynamic and thermodynamic variables 202
6.5 Direct verification of anisotropic cascades using lidar backscatter of aerosols and CloudSat radar reflectivities 209
6.6 Zonal/meridional anisotropy in reanalyses 215
6.7 Summary of emergent laws in Chapter 6 221
Appendix 6A: Revisiting the revised EOLE experiment: the effect of temporal averaging 223
Appendix 6B: Cross-spectral analysis between wind, altitude and pressure 225

7 Generalized scale invariance and cloud morphology 227
7.1 Beyond self-similarity and self-affinity 227
7.2 GSI data analysis 253
7.3 Spatially varying anisotropies, morphologies: some elements of nonlinear GSI 260
7.4 Summary of emergent laws in Chapter 7 267
Appendix 7A: The normalization constant in anisotropic continuous-in-scale multifractal simulations 269

8 Space-time cascades and the emergent laws of the weather 272
8.1 Basic considerations and empirical evidence 272
8.2 Anisotropic space-time turbulence 298
8.3 Global space-time scaling in Fourier space 302
8.4 Space-time relations 306
8.5 Summary of emergent laws in Chapter 8 310
Appendix 8A: The effect of the vertical wind on the temporal statistics 311

9 Causal space-time cascades: the emergent laws of waves, and predictability and forecasting 312
9.1 Causality 312
9.2 The emergent laws of turbulence-generated waves 316
9.3 Predictability/forecasting 327
9.4 Summary of emergent laws in Chapter 9 333
Appendix 10A: The dimensional transition asymptotic scaling of cascades in the low-frequency weather regime 364
Appendix 10B: Stochastic linear forcing paradigm versus the fractionally integrated flux model 369

Appendix 10C: A comparison of monthly surface temperature series 372

Appendix 10 Coupled ocean–atmosphere modelling 376

The climate 381

11.1 Multidecadal to multimillennial scaling: instruments and multiproxies 381

11.2 Scaling up to 100 kyr: a composite overall scaling picture of atmospheric variability 394

11.3 Climate forcings and global climate models 409

11.4 The atmosphere in a nutshell: a summary of emergent laws in Chapter 11 422

References 425

Index 450

Colour plate section appears between pages 000 and 000