The Weather and Climate: Emergent Laws and Multifractal Cascades

Shaun Lovejoy
McGill University, Montréal

Daniel Schertzer
École Nationale des Ponts et Chaussées, Paris
Contents

Preface ix
Acknowledgments xiii
Acronyms and abbreviations xiv

1 Introduction 1
1.1 A new synthesis 1
1.2 The Golden Age, resolution, revolution and paradox: an up-to-date empirical tour of atmospheric variability 4
1.3 The phenomenological fallacy 18

2 Classical turbulence, modern evidence 21
2.1 Complexity or simplicity? Richardson’s dreams and the emergence of the laws of turbulence 21
2.2 The equations of the atmosphere and their scale symmetries 25
2.3 Extensions to passive scalars, to the atmospheric primitive equations 28
2.4 Classical isotropic 3D turbulence phenomenology: Kolmogorov turbulence and energy cascades 31
2.5 The special case of 2D turbulence 36
2.6 Atmospheric extensions 37
2.7 Summary of emergent laws in Chapter 2 51

Appendix 2A: Spectral analysis in arbitrary dimensions 53
Appendix 2B: Cascade phenomenology and spectral analysis 55
Appendix 2C: Spectral transfers 58

3 Scale-by-scale simplicity: an introduction to multiplicative cascades 59
3.1 Cascades as conceptual models 59
3.2 Discrete-in-scale multiplicative cascades 61
3.3 Universal multifractal processes 76

4 Empirical analysis of cascades in the horizontal 83
4.1 The empirical estimation of turbulent fluxes in both dissipation and scaling ranges 83
4.2 The scaling properties of reanalyses 86
4.3 The cascade structure of in-situ aircraft measurements: wind, temperature and humidity fields 96
4.4 The cascade structure of precipitation 100
4.5 The scaling of atmospheric forcings and boundary conditions 106
4.6 Summary of emergent laws in Chapter 4 109

Appendix 4A: Trace moments of quasi-Gaussian processes 111

5 Cascades, dimensions and codimensions 113
5.1 Multifractals and the codimension function 113
5.2 The codimension multifractal formalism 115
5.3 Divergence of statistical moments and extremes 125
5.4 Continuous-in-scale multifractal modelling 141
5.5 Wavelets and fluctuations: structure functions and other data analysis techniques 150
5.6 Summary of emergent laws in Chapter 5 162
Contents

Appendix 5A: Divergence of high-order statistical moments 165
Appendix 5B: Continuous-in-scale cascades: the autocorrelation and finite size effects 167
Appendix 5C: A Mathematica code for causal and acausal multifractal simulations 172
Appendix 5D: Multifractal simulations on a sphere 174
Appendix 5E: Tendency, poor man’s and Haar structure functions and the MF DFA technique 175

6 Vertical stratification and anisotropic scaling 183
6.1 Models of vertical stratification: local, trivial and scaling anisotropy 183
6.2 The Brunt–Väisälä frequency and the classical stable layer approach to stratification 197
6.3 The implications of anisotropic scaling for aircraft turbulence measurements 201
6.4 Horizontal and vertical analyses of dynamic and thermodynamic variables 204
6.5 Direct verification of anisotropic cascades using lidar backscatter of aerosols and CloudSat radar reflectivities 211
6.6 Zonal/meridional anisotropy in reanalyses 217
6.7 Summary of emergent laws in Chapter 6 223
Appendix 6A: Revisiting the revised EOLE experiment: the effect of temporal averaging 225
Appendix 6B: Cross-spectral analysis between wind, altitude and pressure 227

7 Generalized scale invariance and cloud morphology 229
7.1 Beyond self-similarity and self-affinity 229
7.2 GSI data analysis 255
7.3 Spatially varying anisotropies, morphologies: some elements of nonlinear GSI 262
7.4 Summary of emergent laws in Chapter 7 269
Appendix 7A: The normalization constant in anisotropic continuous-in-scale multifractal simulations 271

8 Space-time cascades and the emergent laws of the weather 274
8.1 Basic considerations and empirical evidence 274
8.2 Anisotropic space-time turbulence 300
8.3 Global space-time scaling in Fourier space 304
8.4 Space-time relations 308
8.5 Summary of emergent laws in Chapter 8 312
Appendix 8A: The effect of the vertical wind on the temporal statistics 313

9 Causal space-time cascades: the emergent laws of waves, and predictability and forecasting 314
9.1 Causality 314
9.2 The emergent laws of turbulence-generated waves 318
9.3 Predictability/forecasting 329
9.4 Summary of emergent laws in Chapter 9 335

10 The emergent laws of macro weather and the transition to the climate 337
10.1 What is the climate? 337
10.2 Macro weather: its temporal variability, and outer-limit 350
10.3 Spatial variability in macroweather and climatic zones 356
10.4 Summary of emergent laws in Chapter 10 363
Appendix 10A: The dimensional transition asymptotic scaling of cascades in the macro weather regime 366
Appendix 10B: Stochastic linear forcing paradigm versus the fractionally integrated flux model 371
Appendix 10C: A comparison of monthly surface temperature series 374
Appendix 10D: Coupled ocean–atmosphere modelling 378

11 The climate 383
11.1 Multidecadal to multimillennial scaling: instruments and multiproxies 383
11.2 Scaling up to 100 kyr: a composite overall scaling picture of atmospheric variability 396

11.3 Climate forcings and global climate models 411
11.4 The atmosphere in a nutshell: a summary of emergent laws in Chapter 11 424

References 427
Index 454
Colour plate section appears between pages 483 and 498