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Abstract
The cloud radiances and atmospheric dynamics are strongly nonlinearly coupled, the observed
scaling of the former from 1 km to planetary scales is prima facae evidence for scale invariant
dynamics. In contrast, the scaling properties of radiances at scales < 1 km have not been well
studied (contradictory claims have been made) and if a characteristic vertical cloud thickness
existed, it could break the scaling of the horizontal radiances. In order to settle this issue,
we use ground-based photography to study the cloud radiance field through the range scales
where breaks in scaling have been reported (30 m to 500 m). Over the entire range 1 m to
1 km the two-dimensional (2D) energy spectrum (E(k)) of 38 clouds was found to accurately
follow the scaling form E(k) ≈ k−β where k is a wave number and β is the spectral exponent.
This indirectly shows that there is no characteristic vertical cloud thickness, and that “radiative
smoothing” of cloud structures occurs at all scales. We also quantitatively characterize the type
of (multifractal) scaling showing that the main difference between transmitted and reflected ra-
diance fields is the (scale-by-scale) non-conservation parameter H . These findings lend support
to the unified scaling model of the atmosphere which postulates a single anisotropic scaling
regime from planetary down to dissipation scales.
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1. INTRODUCTION

1.1 The Role of Cloud Radiances in
Investigating Characteristic
Atmospheric Length Scales

There is no doubt about the basic inner and outer
atmospheric length scales: the former — deter-
mined by turbulent dissipation — is of the order
of a millimeter, whereas the latter is the size of the
planet. Since in the intermediate range the corre-
sponding dynamic equations have no characteristic
scale, it is possible that the dynamics are scaling
(and, following Richardson1) that they are ruled
by cascade processes concentrating energy fluxes
into smaller and smaller scales. Since such cas-
cades are the generic multifractal process,2,3 we may
therefore expect wildly variable (strongly intermit-
tent) multifractal statistics; in addition, due to the
existence of stable, attractive cascade/multifractal
processes, such multifractals are expected to fall
into three-parameter universality classes. Indeed,
numerous atmospheric studies (over various ranges
of scale) have found precisely such behavior (at-
mospheric temperatures,4,5 wind,6–9 rain,10 cloud
liquid water content,11 radiation fields,12,13 and
pollution concentration.14–16

In spite of the success of the universal multifrac-
tal modela and the absence of other length scales
in the governing equations, there is still debate
about the true range of scaling in the atmosphere.
An obvious potential source of scale breaking is
through boundary conditions such as the topogra-
phy. However globally, the latter is also apparently
scaling,17,18 down to 100 m or less. Hence, unless
we artificially break the scaling by special condi-
tioning of the statistics (e.g. by specifying that we
look a fixed distance on the lee side of a moun-
tain chain or by subjectively selecting special cloud
types, or using single realizations of special rare
events, etc.) we will not expect to see systematic,
genuine (i.e. non-random) scale breaks. Indeed,
the classical argument for a break at intermediate
scales is quite indirect relying instead on the strong
anisotropy induced by gravity. The argument, go-
ing back to Fjortoft19 and Kraichnan20 starts with
the recognition that isotropic two-dimensional (2D)
and isotropic three-dimensional (3D) turbulence are
theoretically quite different (the former allows no

vortex stretching, it has two quadratic invariants
rather than only one, hence a k−3 regime as well
as a k−5/3 regime, etc.). It is then argued that
since the atmosphere looks “thin” at large enough
scales and “voluminuous” at small scales, that the
latter regimes are indeed roughly isotropic 2D and
isotropic 3D turbulence. A “meso-scale gap” is
therefore predicted separating the two regimes; pre-
sumably at scales comparable to the pressure scale
height of ≈ 10 km.

Although there were indeed early empirical
claims of meso-scale gaps (especially van der
Hoven21), systematic studies starting with Gold-
schmitt (1968),22,23 were not able to reproduce
them. One of the reasons that the issue is still not
completely settled is the difficulty in interpreting
the rather sparse velocity data. For example,the
GASP experiment,24–26 while probably the most
data intensive velocity spectra published to date,
finds no break anywhere near the meso-scale. Al-
though it does show a slight spectral steepening at
low frequencies corresponding to scales of several
hundred to about a thousand kilometers, Lovejoy
et al27 have argued that this could simply be the
result of a systematic bias introduced because the
data came from commercial aircraft which tend to
deviate to avoid the centers of intense storms, thus
somewhat reducing the energy at high wave num-
bers. Indeed, recently28,29 special research data sets
(unaffected by this problem) have been collected
spanning the (even wider) range 100 m to 2000 km,
and no gap has been found. More interestingly,
the aircraft trajectories themselves were found to
be fractal so that the spectral components had a
very different interpretation.

In addition to the evidence directly from the ve-
locity data, three other arguments make it unlikely
that a meso-scale gap exists. The most fundamen-
tal is a theoretical argument which is the outcome
of progress in scaling notions: the framework of
Generalized Scale Invariance (GSI).30,31 It is now
known that scaling need not be isotropic; indeed,
gravity acts at all scales implying that atmospheric
scaling is a priori quite different in the vertical
and horizontal directions. This is indeed in accord
with a growing body of evidence.8,30,32–34 There is
therefore no theoretical or empirical justification for
either the isotropic 2D or isotropic 3D turbulence
models; the alternative “unified scaling” model27,30

aThe main competing multifractal model is the log-Poisson model35 but this is not stable/attractive and does not fit the
empirical turbulence data as closely as the universal multifractal model (see Schertzer et al.36 for detailed intercomparison).
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is both anisotropic and scaling throughout; the at-
mosphere simply becomes more and more stratified
at larger and larger scales.

Although the massive quantities of velocity data
needed to completely and unambiguously resolve
the issue empirically do not yet exist, there is
strong indirect evidence that the corresponding
(horizontal) velocity field is indeed scaling. This
is because — as pointed out in Schertzer et al.3 the
classical size (L)–lifetime (τ) relations for various
atmospheric structures (from dust devils through
cyclones to planetary waves) are roughly power law
in form: τ ≈ L1−H implying a scaling velocity
v ≈ LH . In addition, the exponent H is found to
have a value near 1/3 which is the value predicted
by an anisotropic extension of Kolmogorov theory
(i.e. assuming the energy flux is the fundamen-
tal dimensional quantity in the horizontal but not
vertical directions.30).

The final argument against the existence of a
meso-scale gap comes from the systematic use of
cloud data. In order to overcome the difficulties
in obtaining large enough velocity data sets, Love-
joy et al.27 (building on the wide range cloud scal-
ing found in Lovejoy37 proposed that cloud fields
(as infered by satellite cloud radiances) could be
used instead. The theoretical argument is simple:
since scale invariance is a symmetry principle and
the cloud and velocity fields are strongly nonlin-
early coupled, any break in one should be reflected
in the other. In addition, if the 2D/3D transition
theory is correct, then the cloud field is a particu-
larly pertinent field to study since, unlike the vector
velocity field, a passive scalar cloudb has a single
quadratic invariant in both two and three dimen-
sions. Hence, rather than a (possibly difficult to de-
tect) transition from k−3 (large scale, 2D) to k−5/3

(small scale, 3D spectrum), the transition would
be quite drastic (occurring near the scale of injec-
tion of passive scalar variance). The observation of
excellent scaling in the spectra of 15 cloud scenes
as observed by AVHRR sensors over the Atlantic
Ocean (at five different wavelengths from visible
to thermal infra-red (IR), scale range 1.1–550 km),
increased the total amount of data analyzed in this
(critical mesoscale) range by an order of magnitude

(a single 512 × 512 pixel image contains the same
amount of data as the entire GASP experiment).
Furthermore, the corresponding (fourier space)
angle integration greatly calms the enormous inter-
mittency which makes individual 1D spectra very
hard to interpret.c In Lovejoy et al.,38–40 the quan-
tity of data has been increased by a further factor
of ≈ 50, nearly 1000 satellite cloud pictures are an-
alyzed, making a very solid case for scaling right
through the meso-scale. In particular, since nearly
two years of (fairly) systematically sampled data
were used in, the outer scale of the cascade can be
directly estimated even from scenes over relatively
small areas (e.g. the ARM CART site in Oklahoma,
280×280 km). The resulting estimates of the outer
scale (≈ 20 000 km) are based on both weak and
strong events in both IR and visible wavelengths
and are sufficiently close to the size of the planet
that it is likely that the atmospheric cascade does
indeed start at planetary scales and passes right
through the meso-scale.

Finally, it should be mentioned that usual spec-
tral, fractal or multifractal analysis techniques
effectively “wash-out” (by averaging) most of the
(differential) horizontal anisotropy. If this direc-
tional averaging is justified at all, it is usually on the
grounds of (presumed) statistical isotropy. How-
ever, the Coriolis (and other) forces induce strong
differential stretching and rotation of structures.
Although we do not expect this to break the scal-
ing (the latter will no longer be self-similar, we
will require GSI), it will generally lead to scaling
breaks or logarithmically periodic oscillations in 1D
sections.42,43 This may explain the results of Barker
and Davies44 who used 2D spectral densities to show
the strong anisotropy of two AVHRR pictures and
then found slightly oscillatory 1D spectral cuts.d

1.2 Radiative Smoothing and the
Scales <1 km

Theoretical considerations
Due to the lack of evidence for a break larger than
≈ 1 km (the inner scale of the AVHRR data), the
search for characteristic scales has shifted to the

bAlthough real clouds are not passive scalars, at least some of their statistics are very close to passive scalars (their spectral
exponents and the basic nonconservaton parameter H , see e.g. Lovejoy and Schertzer11 and Davis et al.41

cRecall that scaling is a statistical symmetry principle which is only expected to hold on an infinite ensemble, it is almost
broken on every single realization.
dUnfortunately, the authors did not perform 2D isotropic spectra (i.e. angle integration of the spectral density in fourier space)
so that the scaling properties of the latter were not determined.
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scales < 1 km which is smaller than that avail-
able from meteorological satellites. Since this range
is also smaller than the meso-scale — it is in the
classical turbulent “inertial” range — there are
relatively abundant velocity and temperature spec-
tra (especially at the corresponding time scales).
In the horizontal, there is therefore not much doubt
about the (roughly Kolmogorove) scaling of the
velocity and temperature fields down to the dissi-
pation scale. Theoretically the situation for cloud
radiances is still fairly straightforward: if, as a re-
sult of the turbulence, the cloud liquid water is scal-
ing, then, since the corresponding radiative transfer
equation has no characteristic scale, the radiance
field should also be scaling. Various aircraft data
have indeed found wide range liquid water scaling:
20 km to 10 m,45 330 km to down to 10 m,11 and
13 km tof 5 m46). Since the photon effectively “in-
tegrates” the optical density over its path, the ra-
diation field is thus a nonlinearly smoothed cloud
field. A priori, since both the radiation process
and cloud fields are both scaling, this smoothing
occurs over a wide range of scales in a scaling man-
ner. In a multifractal framework, the problem is
thus to relate the singularities of the two fields; the
simplest such relation being a (fractional) integra-
tion. The establishment of a connection between
the singularities of the two fields is the aim of a
series of papers.47–49 In particular, the latter paper
shows (with only relatively weak assumptions), that
the transmitted radiative flux is an integral over a
fractal flux tube.g

The primary theoretical objection to this scal-
ing picture for the radiances has been voiced by
Davis et al.50 In effect, they pointed out that
if clouds have characteristic vertical thicknesses,
that this characteristic vertical cloud scale would
break the scaling of the radiance field at roughly
the corresponding horizontal distance. They have
demonstrated this on both numerical cloud mod-
els, and by assuming classical (homogeneous field)
photon diffusion. Some empirical support for this
has come from 1D (time series) high resolare un-
knownare unknownution photometer cloud trans-
mission data;51 two stratiform clouds have indeed
been shown to display breaks in the temporal

spectra at scales which roughly correspond (using
mean horizontal advection velocities) to the ap-
parent mean cloud thickness. While there is not
much doubt that imposition of a characteristic
cloud thickness will indeed result in a characteristic
horizontal radiance scale, we are rather more inter-
ested in characteristic scales in the cloud making
mechanism (since it cannot be over-emphasized —
scaling is only an ensemble symmetry). The impli-
cations, if any , to the problem of the scaling of cloud
radiance statistics is therefore not at all obvious,
and as the results below show, may not even extend
to single cloud fields (i.e. the improved statistics of
2D spectra with respect to 1D spectra appear to be
enough to eliminate the break even on individual
cloud images). This is particularly true since one
may presume (from 3D radar measurements of rain
fields34 or from the spectrum of the horizontal wind
in the vertical direction discussed earlier, or from
the statistics of vertically integrated passive scalar
clouds,52 that the vertical and horizontal cloud scal-
ings are likely to be quite different (accounting for
the differential stratification in the vertical). This
means that the statistical relationship between the
horizontal (Lx) and vertical (Lz) cloud extents will
be of the form: Lz = Ls(Lx/Ls)Hz where Ls is the
sphero-scale (the scale where structures are roughly
isotropic), and Hz is an exponent < 1 (empirically
Hz ≈ 0.22 in rain,34 ≈ 0.55 in the horizontal wind.30

In stratiform clouds, Ls may be of the of the order
of 10 m or less implying that the typical horizontal
scale of clouds even only 1 km thick may be hun-
dreds of kilometers (e.g. if Hz < 0.5). A priori,
the (horizontal) radiative smoothing scale of an
anisotropic multifractal with (roughly) 1 km thick-
ness may therefore be far greater, being “smeared
out” in a scaling way as the statistics are accu-
mulated over a statistical ensemble of clouds with
different thicknesses. Indeed, direct support for this
lack of characteristic cloud thickness comes from
recently published53 temporal spectra of remotely
sensed estimates of vertically integrated cloud liq-
uid water: no significant breaks were observed over
the range of about ten minutes to ten hours. These
results suggest that neither the optical thickness nor
the physical thickness has a characteristic value.

eTo within multifractal intermittency corrections.
fAlthough the authors claimed that there was a real break at about 2–5 m, corresponding to some unknown fundamental
cloud dynamics, the break is likely due to insufficient dynamical range of the sensor (see discussion below).
gThis is a great improvement on the popular “Independent Pixel Approximation” which assumes that the integration is over
a nonfractal, and hence much shorter, vertical column.
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Empirical studies
Empirically, the scaling of cloud radiances at scales
< 1 km is not well established, published stud-
ies having until now relied on non-meteorological
satellites (primarily LANDSAT) which are designed
to capture weak surface radiances, and frequently
saturate when clouds are present. In addition to
this technical problem, such data is very expensive
(several thousand dollars a scene), prohibiting large
scale studies; these problems undoubtedly explain
the paucity of empirical studies < 1 km.

The first and most frequently cited paper in
this scale range is that of Cahalan and Joseph54

who fourier analyzed ten individual lines from a
1024 × 1024 subscene of a single LANDSAT cloud
picture, concluding (on the basis of enhanced spec-
tral smoothing observed over the last factor of four
or so in scale, i.e. < 500 m), that this represented
a fundamental cloud scale. More recently, Love-
joy et al.27 have performed a 2D spectral analy-
sis (much less sensitive to the effects of anisotropy
than 1D spectra, and using the full data) of three
LANDSAT (MSS) scenes (120 m resolution), find-
ing evidence for a break at the extreme end
(< 300 m), but that due to massive amounts of sig-
nal saturation that the results were inconclusive.h

Davis et al.50 have performed similar analysis of a
single LANDSAT TM (30 m) cloud scene and found
excellent scaling over the entire range except for a
slight high frequency drop off over the extreme fac-
tor of two (which they however take as evidence for
a real break), and Stanway40 has performed a simi-
lar analysis on a single SPOT image (10 m), finding
no evidence of any break (5 km to 10 m).

2. USING GROUND-BASED CLOUD
PHOTOGRAPHY TO SEARCH
FOR CHARACTERISTIC
LENGTHS IN CLOUD
RADIANCES

2.1 The Data

As this brief review makes clear, the empirical pic-
ture for clouds and cloud radiance characteristic
lengths is still under debate probably primarily due
to the relatively small amount of data which has
been analyzed. In this paper, we use land-based
photography to analyze cloud visible light trans-
mittance. In this way, we are able to extend the

study of their energy spectra to smaller scales than
have been previously analyzed, over a large sam-
ple of data (i.e. many realizations). We then show
that these energy spectra exhibit consistent scal-
ing across all scales observed, and find empirical
multifractal parameters for this energy field.

Thirty-eight cloud images were studied in order
to statistically test for the existence of small scale
scaling breaks covering the scale regime where scale
breaks have been claimed: 30–500 m (Fig. 1). In
order to achieve resolutions in the range of 1 km
to under 1 m, land-based photographs were taken,
digitally scanned and then analyzed by various scal-
ing techniques (including isotropic energy spectra).
The authors are aware of no comparable scaling
studies using land-based photography; the clos-
est being the 1D51 transmittance series containing
much less information than even a single one of the
pictures studied here. The benefits of this method
are not only the extremely high resolution (meters
or less), but also the cost-effectiveness relative to
the use of either satellite images or LWC data.

Photographs were taken using both 35 mm and
2 1/4 inch black and white film, in Montreal, shot
near zenith near local noon. Cloud base heights
were estimated from ceilometer data at nearby
Dorval Airport, and combined with the camera lens
characteristics were used to estimate the pixel size
of the digitized images. However, since we did not
find any strong breaks, the uncertainty in these
heights (≈ ±50%) although large, does not signifi-
cantly affect our results. In addition, scenes where
cloud base height was ill-defined were discarded.
Finally, photographs with saturation greater than
10% of the pixels were also discarded (most scenes
used had under 1% saturation). As well, all im-
ages were examined at high resolution for defects
(e.g. scratches, dust), and those with such defects
were also discarded. Note that for the graph of
the ensemble average of energy versus wave num-
ber, such errors would tend to exaggerate scale
breaks rather than tending to linearity, therefore
the results themselves will show that these problems
are unimportant.

2.2 Scaling Results

All digital images were scanned to 2048 × 2048
pixels using a commercial scanner with eight-bit

hSaturation — if occurring over enough pixels — can indeed artificially break the scaling.
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Fig. 1 Twelve of the 38 cloud pictures analyzed here — showing a wide diversity of cloud types.
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Fig. 2 Spectra of the (a) larger and (b) smaller scenes, separated in the vertical for clarity, with power law regressions
shown.

dynamical rangei (grayscale depth). This limited
dynamical range effectively limits the possible range
over which scaling can be observed, since at small
enough scales neighboring pixels will generally
have nominally identical values (due to this coarse
“quantization”). A simple model for this quantiza-
tion effect is that of a white noise of amplitude equal
to the minimum distiguishable level differences; as
expected, the spectra do flatten out at very high
wave numbers. In geostatistical terminology, this
is therefore a classical “nugget” effect usually ob-
served in real space using variogrammes. However
in wave number space, it is also quite easy to an-
alyze and determine the wave number where this
flattening will occur. For each image, the num-
ber of levels (“digital counts”, DN) between the
maximum and minimum values (∆Imax; expressed
in DN) gives an estimate of the low wave number
(k = 1 corresponding to the entire scene size) stan-
dard deviation; hence if kcr is critical wave num-
ber where flattening occurs, then E(1)/E(kcr) ≈
(∆Imax)2. In practice, kcr is easy to determine from
log E(k) versus log k plots; starting at the low fre-
quency end, one simply moves down to energy levels
E(kcr) ≈ E(1)/(∆Imax)2. Since generally, we find
the spectrum to be scaling: E(k) ≈ k−β , we obtain:

kcr ≈ (∆Imax)2/β . (1)

In addition, since empirically, β ≈ 2, and since
∆Imax is usually not far from 28 (the maximum due
to the eight-bit dynamical range), we typically ob-
tain kcr ≈ 256 (in units of inverse pixels). In order
to minimize this quantization effect, as well as the
effect of other defects, pictures were therefore av-
eraged to kcr pixels across (roughly equivalent to
as taking the picture at a lower pixel resolution).
In Fig. 2, we show the resulting spectra arranged
top to bottom in order of increasing absolute reso-
lution (using the estimated cloud height). As can
be seen, although the scaling need not hold on in-
dividual realizations, it is nevertheless surprisingly
well respected; the main variations about power de-
cay being displayed at the lowest wave numbers
where each photo contains very few corresponding
structures (i.e. the statistics become very poor).

We see fair scaling on each realization with small
variability in the spectral exponent β; reminiscent
of the surprisingly little scene-to-scene variability in
scaling at much larger scales using AVHHR satel-
lite data in Lovejoy et al.27 Figure 3 shows the en-
semble averaged energy spectra across all 38 scenes;
only the range of scales over which at least five
spectra were contributing to the average is shown
since for the extremes, representing extremely large
and small scale structures, few scenes contributed
to the average. As can be seen, the central region,

iTechnically the scanner had 12 bits but four were used internally to improve the signal; only eight were available for analysis.
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Fig. 3 Ensemble averaged power spectra (only the aver-
ages using spectra from at least five clouds are shown). The
straight reference line has slope −2.10.

where most spectra contributed and the data is
most meaningful as representing an “ensemble
average”, the scaling is excellent.

The power laws exponent estimated for the en-
semble is β ≈ 2.10. This is slightly higher than
spectra obtained from satellite images with either
ocean or land below, presumably reflecting the fact
that the background field here is (nearly) totally
smooth (sky). In the largest such surveys, Love-
joy et al.27 obtained values of 1.67 (AVHRR, over
ocean, 1.1–550 km) and 1.43 (AVHRR land40), see
Table 1. In satellite images, the background for the
clouds are earth and water, both of which exhibit
their own multifractal (scaling) characteristics dif-
ferent from clouds.55,56 In these images, background
to the clouds is flat sky (i.e. to the limits of the
resolution observed).

2.3 Multifractal Results

With these results showing scaling of the cloud
energy spectra down to under 1 m, we then per-
formed systematic multifractal analysis on the data
to determine the exact type of scaling. Recall that
whereas the general framework for scale invariant
geometric sets of points is fractal sets, the general
framework for scaling fields is multifractals involv-
ing an infinite hierarchy of fractal sets. If the inten-
sity field at scale ratio λ (largest/smallest scale) is
Iλ, then this means that:

Iλ = φλλ
−H (2)

where φλ is the scale-by-scale conservative flux; H
characterizes the distance of the observed Iλ from
φλ. In the Fractionally Integrated Flux model
(FIF2,3 the linear scaling λ−H corresponds to a frac-
tional integral (power law filter) of order H, and φλ
which is the direct result of a multiplicative cascade
process has the following statistics:

〈φqλ〉 = λK(q) (3)

where K(q) is the multiscaling moment exponent
function. Exploiting the existence of stable attrac-
tive multifractal processes, K(q) can be character-
ized by the two universal multifractal parameters
C1, 0 ≤ α ≤ 2:

K(q) =
C1

α− 1
(qα − q) . (4)

These parameters were found using the technique of
Double Trace Moments (DTM).57 The DTM tech-
nique directly estimates α, C1, through introduc-
tion of a scaling exponent K(q, η) via the use of a
second moment η, to which we raise the resolution
field at the highest available resolution (Λ):

〈(φηΛ)qλ〉 = λK(q,η) . (5)

The notation above indicates that the field at the
highest available resolution Λ is raised to the η
power; the result degraded to the intermediate
resolution λ (obtained by either spatial averaging
or by wavelets), and the average of the qth power
taken. For universal multifractals, this yields a
straightforward relation for α:

K(q, η) = ηαK(q) . (6)

It should be noted that this analysis is carried
out on the underlying conserved field φ. Since the
observed I is related to the conserved cascade quan-
tity φ by a fractional integration of order H, φ
can be obtained by fractionally differentiating the
measured field (filtering with kH). Lavallée et al.57

showed that if H < 1, it is sufficient to estimate φ
from the (absolute value) of the finite difference ap-
proximation to the first derivative. In cases where
the dynamical range is inadequate (such as here),
this will lead to a potentially significant number of
spurious exactly zero gradients (i.e. when neighbor-
ing field values have identical digital counts); even
a small number of spurious values can greatly af-
fect the low enough order statistics. Hence, fol-
lowing numerical studies discussed in Stanway,40

we first fractionally integrated by a small amount
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Table 1 A comparison of various multifractal radiance studies.

α C1 H β

Light transmitted through clouds (this paper) 1.77 0.061 0.61 2.10

Nebulae (star light transmitted through interstellar dust)58 1.96 0.038 0.67 2.26

AVHRR: clouds over land40 1.93 0.078 0.36 1.43

AVHRR: clouds over ocean40 j 1.83 0.095 0.21 1.67

(order 0.2), and then took absolute differences. The
first step is a (32-bit) scaling smoothing opera-
tion which essentially eliminates all zero gradients;
the second step eliminates the constant level corre-
sponding to k = 0 in spectral space (the latter can-
not be fractionally integrated by fourier techniques
since the filter k−H diverges for k = 0).

Equation (6) allows us to estimate α simply by
plotting logK(q, η) versus log(η) for fixed q. Vary-
ing q will then improve our statistical accuracy.
From this plot (Fig. 4) the slope yields α, and the
intercept an estimate of C1. Since for large enough
qη, the statistics become poor (being eventually
dominated by single large gradients), the curves
eventually flatten off for large η. Similarly, for small
enough η, the results become sensitive to problems
measuring weak gradients (including round-off er-
ror in four-byte arithmetic); numerical investigation
by Stanway,40 shows that the optimum range for
estimating C1, α is the range 0.1 < (qη) < 1.

Averaging the values from these graphs, we ob-
tain, α = 1.77, C1 = 0.061. Since the spectrum is a
second order statistic, it can be shown that for such
processes, H can be derived simply from the values
of β, α, and C1, with β representing the spectral
slope of the observed process.

H = (β − 1 +K(2))/2 . (7)

Using this relation and the above parameter esti-
mates, we find H = 0.61 summarized in Table 1.

Table 1 shows that while C1 and α are roughly
the same for both transmitted and reflected radi-
ances, the main difference being the value of H
which is substantially lower for the reflected fields
whether over ocean or land (although in the lat-
ter there is substantial scatter in the estimates
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Fig. 4 Double trace moment for the ensemble of 38 scenes
for q = 0.5, 1.1, 1,7 (the slopes fit over the range 0.1 < (qη) <
1 are respectively: α = 1.76, 1.79, 1.81).

from one cloud picture to the next, of the order of
± 0.2). There may indeed be a physical reason for
the similitude of the radiances through atmospheric
or interstellar clouds. In both cases, the scatterers
are advected by turbulence (although in the lat-
ter, it is magneto-hydrodynamic turbulence), and in
both cases, the scattering process is dominated by
scattering (there is little absorption).

3. CONCLUSION

The standard model of the atmosphere involves
large scale isotropic 2D turbulent regime separated
by a small scale isotropic 3D regime by a “meso-
scale gap” somewhere in the vicinity of the presssure
scale height (≈ 10 km). With theoretical (scaling)
and empirical advances seriously undermining this
picture, attention has turned to smaller scales where

jThe same data was analyzed by Tessier et al.59 but without carefully dealing with the spurious zero gradients as discussed
above, yielding a substantially lower α estimate, but similar C1.
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meteorological satellites do not operate: although
the horizontal cloud liquid water field is empiri-
cally scaling down to meters or less, if clouds had
a characteristic vertical thickness, then the radi-
ation field would nevertheless yield a comparable
horizontal scale.

In this study, systematic analyses of cloud radi-
ance transmittance were carried out. The clouds
analyzed were for scales from the 1 km range down
to under 1 m. Using standard energy spectrum
analyses — and carefully accounting for the limi-
ted dynamical range of the digitized images — we
showed that even individual realizations exhibited
good scaling throughout the ranges analyzed; the
ensemble average spectrum had remarkably good
scaling over the range of at least 1 km down to
≈ 1 m. This is strong support for the scaling of
cloud liquid water densities in both horizontal and
vertical directions.

When combined with similar systematic analyses
of cloud reflectance taken from satellite images, it
is likely that the atmosphere is scaling from global
scales down to the sub-meter regime. This evidence
is strong support of the Unified Scaling Model of
the atmosphere. In addition to the range of scaling,
we also investigated the type of scaling showing
that the radiances are multifractal and character-
ized the latter by the corresponding multifractal
universality classes.

Multifractal analyses were then applied to these
fields to determine the parameters α, C1 and H
(which define the entire c(γ) and K(q) functions).
Ensemble averaged results were similar to those
found in previous studies of atmospheric fields. The
high value for α in particular indicates strongly tur-
bulent multifractal fields, where violent singularities
will arise. These results give us a statistical basis for
prediction of earth radiation variability extended
beyond simple climatological averages, which do
not account well for higher order statistics/extreme
singularities.

A better understanding of the multifractal pa-
rameters of cloud light transmittance will be impor-
tant in improved modeling of the earth’s radiation
budget, and is of fundamental importance in under-
standing the relation between cloud internal struc-
ture and light transmittance. This study provides
further evidence for defining the values of these
parameters at least within a small range. Because
of the extreme cost efficiency of this method, it is
hoped that the results of this study can quickly and
independently be corroborated and extended.
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