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[1] Is the numerical integration of nonlinear partial
differential equations the only way to tackle atmospheric
complexity? Or do cascade dynamics repeating scale after
scale lead to simplicity? Using 1000 orbits of TRMM
satellite radiances from 11 bands in the short wave (visible,
infra red) long wave (passive microwave) and radar regions
and 8.8 to 20,000 km in scale, we find that the radiance
gradients follow the predictions of cascade theories to
within about ±0.5%, ±1.25%, ±5.9% for the short waves,
long waves and reflectivities respectively and with outer
scales varying between !5,000 to !32,000 km. Since the
radiances and dynamics are strongly coupled, we conclude
that weather can be accurately modeled as a cascade
process. Citation: Lovejoy, S., D. Schertzer, V. Allaire,
T. Bourgeois, S. King, J. Pinel, and J. Stolle (2009), Atmospheric
complexity or scale by scale simplicity?, Geophys. Res. Lett., 36,
L01801, doi:10.1029/2008GL035863.

1. Introduction
[2] In 1922, Lewis Fry Richardson published the now

celebrated book ‘‘Weather forecasting by numerical process’’
[Richardson, 1922] in which he daringly proposed that the
weather could be forecast by brute force numerical integra-
tion of coupled nonlinear partial differential equations
(PDE’s). But the father of numerical weather predication
was Janus-faced: his book contains a famous phrase in
which he proposed that the complex nonlinear atmospheric
dynamics cascaded scale after scale from planetary down to
small viscous scales. Shortly afterwards [Richardson, 1926],
he suggested that atmospheric particle trajectories might be
Wierstrasse-like functions (fractals) with simple (but non-
classical) scale by scale regularity. Richardson apparently
believed that messy complexity ought to give way to scale by
scale simplicity: he is often considered the grandfather of
modern cascade models.
[3] Today, numerical forecasting is a daily reality; but what

about the dream of scale by scale simplicity embodied in
cascades? For a long time after Richardson, cascades were
inspirational and were regularly invoked in turbulence
theories. However, it was not until the development of
explicit multiplicative cascade models (starting in the
1960’s and 70’s [e.g., Novikov and Stewart, 1964; Yaglom,
1966;Mandelbrot, 1974]) that empirically verifiable cascade
predictions could go much beyond the determination of (non
intermittent) spectral exponents and of the up scale or down

scale cascade direction [see, e.g., Boer and Shepherd, 1983;
Chen and Wiin-Nielsen, 1978; Strauss and Ditlevsen, 1999].
[4] By the 1980’s it was realized that multiplicative

cascade models were the generic multifractal process. Sub-
sequent developments have shown their great generality
which have spawned applications throughout physics and
the geosciences. In particular, while today there is a general
consensus that at least over some scale range the atmosphere
is multifractal, there have not yet been planetary scale
investigations of the precise predictions of these explicit
cascade models (equation 1 below). One of the reasons is
that the dynamically most important fields must be measured
in situ and this introduces numerous difficulties of interpre-
tation (e.g., both (sparse) networks and aircraft trajectories
can themselves be fractal [Lovejoy et al., 1986, 2004;
S. Lovejoy et al., Reinterpreting aircraft measurements in
anisotropic scaling turbulence, submitted to Atmospheric
Physics and Chemistry, 2008] and sonde outages can be
multifractal (S. Lovejoy et al., The vertical cascade structure
of the atmosphere and multifractal drop sonde outages,
Journal of Geophysical Research, in press, 2008)). Conse-
quently it is advantageous to use remotely sensed radiances:
the largest relevant study [Lovejoy et al., 2001] used nearly
one thousand 256 " 256 pixel ‘‘scenes’’ of satellite visible
and Infra red radiances over the range 2.2 to 280 km. While
the fields accurately displayed cascade statistics, the largest
scales - including the key outer scale of the variability - was
only indirectly estimated by extrapolation well beyond the
measured range. Up until now, these shortcomings havemade
it possible to dismiss the idea that scaling might hold up to
near planetary scales or over wide ranges and to continue to
pursue approaches incompatible with scaling.
[5] Although the study [Lovejoy et al., 2001] had a

hundred times the data content of the largest in situ
turbulence experiment - it was small by today’s standards.
In this paper, we use about one thousand orbits of visible,
infra red (IR), passive and active microwave data (11 bands
in all) from the Tropical Rainfall Monitoring Mission
(TRMM) satellite to directly extend these analyses to
20,000 km. Because of this wide range and the fact that
each orbit comprises about the same amount of data as the
entire previous study, this paper provides the first near
‘‘empirical proof’’ of wide range, planetary scale cascade
scaling.

2. Data
[6] We analyze data from the Visible and Infrared

Scanner (VIRS) [Barnes et al., 1999], the Thermal
Microwave Imager (TMI) [Kummerow et al., 1997] and the
precipitation radar (PR) (TRMM Precipitation radar team,
2005) from the TRMM satellite (launched on November 27,
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1997, in an orbit between ±38! latitude at 350 km altitude,
period of 91 minutes). VIRS has five separate bands, ranging
from the visible to thermal infrared (Table 1). The nominal
resolutions were 2.2 km, with a 720 km swath width. TMI has
nine microwave bands (four of which are dual polarization)
with swath width 760 km (Table 2). The nominal resolution at
the highest frequency (85.5GHz! 3.5mm)was 4.2" 6.8 km
(cross-track X along track) with the other bands having lower
resolutions decreasing to 36" 60 km at (10.6 GHz! 3.0 cm)
with 13.9 km between successive scans. Since the scaling
properties of the horizontal andvertical polarizationswere very
similar, we only analyzed the five vertically polarized bands
indicated in Table 2. Finally, we have included analysis of the
active (PR) sensor which is a 2.2 cm wavelength radar with
resolution4.3kminthehorizontaland250minthevertical(only
near surface reflectivities were considered).
[7] Although analyses were performed on orbits 538

through 1538 (roughly January and February 1998), each
band has differing fractions of missing data (4–15% were
discarded). This roughly two month period was chosen
because it was about 2–4 times the typical lifetime of
global scale structures (the ‘‘synoptic maximum’’): analysis
of first half of the data indeed gave nearly identical results.

3. Analysis
[8] If atmospheric dynamics are controlled by scale

invariant turbulent cascades of various (scale by scale)
conserved fluxes 8 then the fluctuations DI(Dx) in the
radiances over a distance Dx are related to the turbulent
fluxes by a relation of the form DI(Dx) ! 8DxH (this is a
generalization of the Kolmogorov law for velocity fluctua-
tions). Without knowing H - nor even the physical nature of
the flux - we can use this to estimate the normalized
(nondimensional) flux at the smallest resolution of our data:
8/h8i = DI/hDIi (where ‘‘hi’’ indicates statistical averag-
ing). In this case, DI(Dx) was estimated by absolute differ-
ences: DI(Dx) = jI(x + Dx) # I(x)j with Dx the smallest
reliable resolution and x an along track coordinate, but other
definitions of fluctuations could be used. This flux can then
be degraded (by averaging) to a lower resolution L. If the
fluxes are realizations of pure multiplicative cascades then
the normalized statistical moments Mq obey the generic
multiscaling relation:

Mq ¼
l
leff

! "K qð Þ
;l ¼ Learth=L;leff ¼ Learth=Leff ð1Þ

where Mq = h8lqi/h81qi and Leff is the effective outer scale of
the cascade. h81i is the ensemble mean large scale (i.e., the

climatological value). l is a convenient scale ratio based on
the largest great circle distance on the earth Learth = 20,000
km and the scale ratio l/leff is the overall ratio from the
scale where the cascade started to the resolution scale L, leff
is determined empirically.
[9] In Figure 1 we show the results on the 5 VIRS bands.

For reference, we have plotted the regressions in which the
slope K(q) was fitted to each line, and the intercept forced to
go through the common point l = leff. We see that to high
accuracy out to near planetary scales, the only significant
qualitative difference between the flux statistics for different
wavelengths is the outer scale. From Table 1 we can see that
Leff is in the range of about 11000–28000 km. This cascade
‘‘signature’’ of converging lines shows that the variability of
weak and strong structures (large and small q) is the same as
that produced by a multiplicative cascade. From the figures
we see that the very large scales depart a little from the pure
scaling only for scales >5000 km (far left). To further
quantify the differences between wavelengths we must
compare the slopes (the K(q) functions). A simple way to
do this which is valid near the mean (q = 1) is to use the
parameter C1 = K0(1) called ‘‘the codimension of the mean’’;
see Table 1. C1 quantifies the sparseness of the field values
which give the dominant contributions to the mean (for a
full characterization, universal multifractals can be used
[e.g., Schertzer and Lovejoy, 1987]).
[10] To understand Table 1, we note that the VIRS bands

1, 2 are essentially reflected sunlight (with very little
emission and absorption) so that for thin clouds, the signal
comes from variations in the surface albedo (influenced by
the topography and other factors), while for thicker clouds it
comes from nearer the cloud top via (multiple) geometric
and Mie scattering. As the wavelength increases into the
thermal IR, the radiances are increasingly due to black body
emission and absorption with very little multiple scatter.
Whereas at the visible wavelengths we would expect the
signal to be influenced by the statistics of cloud liquid water
density (C1 ! 0.07 [Lovejoy and Schertzer, 1995; Davis et
al., 1996])–itself close to those of passive turbulent scalars
(C1 ! 0.04; see the reviews by Lovejoy et al. [2008b], Lilley
et al. [2008], and Radkevitch et al. [2008])–for the thermal
IR wavelengths it would rather be dominated by the
statistics of temperature variations (C1 ! 0.10 [Lilley et
al., 2008])– themselves also close to those of passive
scalars. Elsewhere we quantify the shape of the K(q) curves
using universal multifractals showing that the K(q) func-
tions are close to those of previous visible and infra red
studies performed at smaller scales (ground photography,
SPOT, AVHRR and GMS satellites [Lovejoy and Schertzer,
2006]).

Table 1. Characteristics of the Five Visible and Infra Red Bands

Band Wavelength Resolution (km) d (%) C1 Leff (km)

VIRS 1 0.630 mm 8.8 0.53 0.077 13800
VIRS 2 1.60 mm 8.8 0.61 0.079 25000
VIRS 3 3.75 mm 22. 0.35 0.065 28200
VIRS 4 10.8 mm 8.8 0.37 0.081 11200
VIRS 5 12.2 mm 8.8 0.36 0.084 12600

Table 2. Characteristics of the Five TMI Bandsa

Band Wavelength Resolution (km) d (%) C1 Leff (km)

TMI1 3.0 cm (10.6 GHz) 111.4 1.01 0.255 15900
TMI 3 1.58 cm (19.35 GHz) 55.6 1.25 0.193 6900.
TMI 5 1.43 cm (22.235 GHz) 27.8 1.66 0.157 5000.
TMI 6 8.1 mm (37 GHz) 27.8 1.51 0.15 4400.
TMI 8 3.51 mm (85.5 GHz) 13.9 1.26 0.102 6300.
TRMMb Z 2.2 cm (13.2GHz) 4.3 5.9b 0.63 32000

aAll used vertical polarization.
bZ = radar reflectivity factor, from Lovejoy et al. [2008a]. The minimum

detectable signal is twice the mean so that most of the deviations from
scaling are at low q.
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[11] In order to quantify the accuracy to which scaling is
obeyed, we can determine the small deviations by estimat-
ing the mean absolute residuals:

D ¼ log10 Mq

# $

# K qð Þ log10 l=leff

# $
%

%

%

% ð2Þ

For each q, D is determined from the linear regression on
Figure 1; the slopes yield K(q) and leff is determined from
the intercept (fixed to be the same for all q). The overbar in
equation (2) indicates averaging over the different l (at
intervals of 100.2) over the available range of scales up to
5000 km. For 0' q' 2 (corresponding to >90% of the data)
we find that the scaling of the fluxes is within D = 0.015.
Defining the percentage deviation d = 100x(10D # 1) this
implies d < ±0.35%. The mean d over the range 0' q' 2 (d)
is given in Table 1; it is in the range ±0.35 to ±0.61%.
[12] The analogous analyses for the TMI data are shown in

Figure 2 with leff, d given in Table 2. We see that d is a little
larger than for the VIRS (±1.01% # ±1.66%). At the same

time, as the wavelength increases from TMI 8 (!3.5 mm) to
TMI 1 (!3.0 cm),C1 tends to increase from roughly theVIRS
value (!0.10) to 0.26. It is instructive to compare these values
to those of the TRMM (near) surface radar reflectivity (Z;
Figure 3 and bottom line of Table 2). We see that Z has an
extremely high C1; it also has stronger variability with Leff
somewhat larger than the size of the earth implying that due to
interactions with other atmospheric fields even globally
averaged Z’s have the same residual variability that they
would have had if the cascade had reached 32,000 km.
Although a curvature is visible for the low q values, Lovejoy
et al. [2008a] quantitatively explain this as an artifact of the
insensitivity of the radar to low reflectivity values (the
corresponding C1 for the rain rate is !0.3, although this
depends on the Z–R relation and will be discussed else-
where). The ability of themodel to accurately predict not only
the first order behaviour-but also the deviations from that
behaviour–lends it further support.
[13] To understand these results, recall that the thermal

microwave radiation has contributions from surface reflec-

Figure 1. This shows the moments q = 0.2, 0.4. . . 1.8, 2.0, of the cascade fluxes associated with the radiances from VIRS
bands 1–5 (left to right, top to bottom); l = 1 corresponds to 20000 km. With the exception of the q < 0.5 lines, the curves
increase with q monotonically from bottom to top. The blue lines are the regressions through the common outer scales
indicated in Table 1, for each q, the slopes are the estimates of K(q).
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tance, water vapour and cloud and rain. Since the particles are
smaller than the wavelengths this is the Rayleigh scattering
regime and as the wavelength increases from !3.5 mm to
!3.0 cm the emissivity/absorptivity due to cloud and precip-
itation decreases so that more and more of the signal
originates in the lower reaches of clouds and underlying
surface. Also, the ratio of absorption to scattering decreases
so that at 3 cm multiple scattering can be important in raining
regions. The overall result is that the horizontal gradients -
which we have used to estimate the cascade fluxes - will
increasingly reflect large internal liquid water gradients. We
therefore expect the longer wavelengths to give flux statistics
close to those of the (2.2 cm) radar reflectivity signal (which
is proportional to the second moment of the particle vol-

umes). This explanation is consistent with the trend men-
tioned above for C1 to increase sharply at the longest
wavelengths towards the reflectivity value. The relative
similarity of the TMI 1 band and Z (and the other bands with
the VIRS) is also supported by the fact that the outer scale is
in the 5,000–7,000 km range for the longer wavelengths but
is nearly 16,000 km–approaching the reflectivity outer
scale–in the TMI 1.

4. Conclusions
[14] It is paradoxical that in spite of growing quantities of

atmospheric data that there is still no accepted picture of the
scale by scale statistical properties of the atmosphere, yet
the high accuracy (!±1%) with which we show the cascade

Figure 2. Same as Figure 1 but radiances from TMI bands 1, 3, 5, 6, 8 (left to right, top to bottom). The blue lines are the
regressions through the common outer scales indicated in Table 2.
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structure to be respected makes it one of the most accurately
obeyed atmospheric laws. Since the radiances are strongly
coupled with the dynamics, it is hard to avoid the conclu-
sion that the latter are spatially scaling over virtually the
entire meteorologically relevant range. Elsewhere but with
important nuances, we show that this conclusion also holds
for temporal scaling.
[15] So which Richardson is right? The father of NWP or

the grandfather of cascades? The answer may be both. This
is possible because cascade models are specifically designed
to satisfy many of the basic symmetries of the nonlinear
PDE’s especially the scaling itself but also the scale by scale
conservation of fluxes such as energy which are conserved
by the nonlinear terms. Up until now, the scaling (but not
directly cascade) properties of the models have been
primarily studied in the time domain [Syroka and Toumi,
2001; Blender and Fraedrich, 2003; Fraedrich and Blender,
2003; Kiehl and Trenberth, 1997], however models are now
large enough so that their (possible) spatial cascade properties
can be directly studied. Analysis on a typical GCM (the
Canadian GEMmodel (J. Stolle et al., The stochastic cascade
structure of deterministic numerical models of the atmo-
sphere, Physica A, 2008)) do indeed show cascade behaviour
in the horizontal wind up to !10,000 km, so that the models
catch a glimpse of the first factor of !30 of a cascade which
might continue down to millimeter scales. Conventional
models therefore already implicitly use cascades; however
there are also explicit space-time stochastic cascade models
[Marsan et al., 1996; Schertzer and Lovejoy, 2004; S. Love-
joy and D. Schertzer, On the numerical simulation of contin-
uous in scale isotropic universal multifractals, submitted to
Computers and Geoscience, 2008] which have the advantage
of being able take into account arbitrarily large ranges of scale
and of being able to directly produce ‘‘ensemble’’ forecasts.
Sincemodern ensemble forecast systems require assumptions
about the stochastic structure of the atmosphere, our results
have direct applications for conventional modeling (e.g.,
‘‘stochastic parameterisations’’ [Palmer, 2001]). Since cur-
rent earth radiation budgets estimates do not take the implied
systematic scale-dependent biases into account, there will
also be applications to the assessment of climate change and
to remote sensing.

[16] The history of science has shown that apparently
complex phenomena usually end up giving way to simplicity,
and that simplicity points the way to the future. In this case,
the discovery that model dynamics are themselves accurately
modeled by cascade processes opens up promising new
(stochastic) ways of understanding, modeling and forecasting
the atmosphere [Schertzer and Lovejoy, 2004] that directly
exploit the scale by scale simplicity allowing us to model the
enormous range of scales found in the atmosphere.
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Marnella-Vallée, France. (daniel.schertzer@cereve.enpc.fr)

L01801 LOVEJOY ET AL.: COMPLEX OR SIMPLE? L01801

6 of 6


