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Abstract

Scale invariance is rapidly becoming a new paradigm for geophysics. However, little attention has been paid to
the anisotropy that is invariably present in geophysical ®elds in the form of di�erential strati®cation and rotation,

texture and morphology. In order to account for scaling anisotropy, the formalism of generalized scale invariance
(GSI) was developed. Until now there has existed only a single fairly ad hoc GSI analysis technique valid for
studying di�erential rotation.
In this paper, we use a two-dimensional representation of the linear approximation to generalized scale

invariance, to obtain a much improved technique for quantifying anisotropic scale invariance called the scale
invariant generator technique (SIG). The accuracy of the technique is tested using anisotropic multifractal
simulations and error estimates are provided for the geophysically relevant range of parameters. It is found that the

technique yields reasonable estimates for simulations with a diversity of anisotropic and statistical characteristics.
The scale invariant generator technique can pro®tably be applied to the scale invariant study of vertical/horizontal
and space/time cross-sections of geophysical ®elds as well as to the study of the texture/morphology of ®elds. # 1999
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1. Introduction

The use of scale invariance in the study of geophy-

sics Ð even if only implicitly in the form of fractal

geometry Ð is becoming widespread. Unfortunately,

existing scale invariant models and analysis techniques

(whether mono or multifractal) usually assume self-

similarity (hence isotropy). In contrast to these isotro-

pic assumptions and models, geophysical ®elds are gen-

erally highly anisotropic. For example, in the

atmosphere, ocean and earth interior, they are di�eren-

tially strati®ed due to gravity. Furthermore, clouds,

ridges in sea ice, fault planes in earthquakes and

mountain ranges in topography Ð to name a few Ð

all have scale-dependent preferred directions arising

from the Coriolis force, external stresses, or other

boundary conditions which lead to di�erential ro-

tation. The full scope of the scale-invariant symmetry

principle has therefore been drastically underestimated;

perhaps an extreme example being the atmosphere,

where the use of outmoded isotropic scaling notions

has lead to the prediction of a ``meso-scale gap''
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between the large and small scales which is not compa-

tible with modern scaling analyses or theories (see
Lovejoy et al., 1993).
Scale invariance is a symmetry respected by systems

whose large and small scales are related by a scale
changing operation involving only the scale ratio: they

have no characteristic size. As with the familiar sym-
metries associated with energy and momentum conser-
vation, the scaling symmetry must a priori be assumed

to hold. Only when a speci®c symmetry breaking
mechanism can be shown to exist should one invoke
the existence of fundamental length scales. While it is

true that in self-similar scaling small structures look
the same as large ones, this is no longer true in aniso-

tropic scaling, hence phenomenological classi®cations
of structures can be quite misleading. Although many
geophysical ®elds exhibit no symmetry-breaking mech-

anism over a wide range of scales, for purely phenom-
enological reasons (i.e. phenomena look di�erent at
di�erent scales) a scale bound/nonscaling approach is

often adopted; e.g. a phenomenological school exists in
meteorology which hypothesizes the existence of di�er-

ent dynamical mechanisms every factor of two or so in
scale Ð in spite of the fact that the underlying
(Navier±Stokes) equations are scaling between a small

viscous scale (of the order of a mm) and a large scale
of planetary dimensions. Furthermore, since they are
also scaling, boundary conditions (e.g. topography,

Lovejoy and Schertzer, 1990; LavalleÂ e et al., 1993) will
not break the scaling.

Not only are the usual theoretical scaling notions
isotropic, so are the corresponding data analysis tech-
niques. For example, a common tool used to study

geophysical scale invariance is the isotropic energy
spectrum, E(k ), (where k=|k| and k is the wave num-
ber), which is obtained by angle integrating (i.e. inte-

grating out) the angular energy density. If a ®eld is
isotropic and scaling, then E(k )0kÿb, where b is the

scale invariant spectral exponent. Therefore, the aniso-
tropy of a scaling ®eld (if it is not extreme) may be
``washed-out'' by the smoothing e�ect of the inte-

gration. Thus, a power-law isotropic energy spectrum
can indicate approximate scaling without implying iso-
tropy (see Lovejoy et al., 1993, for a discussion of this

in cloud radiances). The same is true of box-counting
and other fractal or multifractal analysis techniques

which use similarly shaped boxes or circles at di�erent
scales, hence (implicitly) isotropic scale changes. On
the other hand, an apparent break in the scaling of an

isotropic spectrum or other statistic may be spurious;
it may simply imply anisotropic scaling. Similarly, spec-
tra of one-dimensional cross sections of anisotropic

processes may also show spurious breaks in the scal-
ing.

Although geophysical ®elds are a priori scale invar-
iant, there is usually no reason to assume a speci®c

type of anisotropy (e.g. self-a�nity); quite general

forms of scale invariance must be considered. In sev-
eral papers, Schertzer and Lovejoy (1983, 1984, 1985,
1987, 1989, 1991) present a formalism called

Generalized Scale Invariance (GSI), which de®nes the
notion of scale in anisotropic scaling systems. The
physical motivation for GSI is that the dynamics

should determine the appropriate notion of scale; it
should not be imposed from without.

Other researchers have seen the need for studying
the anisotropy of geophysical ®elds. Fox and Hayes
(1985), VanZandt et al. (1990), and Pilkington and

Todoeschuk (1993) independently proposed the intro-
duction of di�erent scaling exponents in di�erent direc-

tions. Although at ®rst sight this is appealing, it turns
out to be quite incompatible with a scaling generation
of anisotropy. For the mechanism to be independent

of the absolute scale, and to depend only on the scale
ratio (relative scale), the scale changes must satisfy
group properties (see Section 2). Since this is not the

case for this approach, any underlying dynamics will
be fundamentally dependent, rather than independent,

of size.
Recently, starting in the turbulence literature, an

idea closely related to GSI has been in vogue: extended

self-similarity (ESS). GSI uses an anisotropic notion of
scale which is physically determined by the dynamics
(especially the di�erential rotation and strati®cation of

structures). Similarly, ESS uses a scale de®ned by the
statistics (in turbulence, the third order velocity struc-

ture function), in this case, the idea is to (somewhat)
take into account the dissipation which destroys the
scaling with respect to the usual scale notions. In both

cases, rather than using an academic (Eulerian) scale,
one attempts to let them be determined by the
dynamics. See Schertzer et al. (1997) for further discus-

sion of the relation of ESS to GSI.
To date, the only data analysis technique which can

handle both di�erential rotation and strati®cation is
the Monte-Carlo di�erential rotation method (P¯ug et
al., 1991 and 1993; Lovejoy et al., 1992; see also

Lovejoy et al. (1987) for a discussion of the anisotropic
``elliptical-dimensional sampling technique''). However,

this technique has many problems (discussed later) and
the new scale invariant generator (SIG) technique out-
lined here is a considerable improvement.

SIG quanti®es anisotropic scale invariance by esti-
mating the GSI parameters. It was developed to study
the scaling of the spectral energy density in geophysical

phenomena (yet with little e�ort it can be more gener-
ally applied). The scaling is a statistical property,

therefore large data sets (large ranges of scales) are
needed to ensure accurate results. For this purpose,
satellite images of geophysical phenomena are often

studied. Because of these large data sets, a major chal-
lenge of developing an analysis technique is to make it
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e�cient. The previous analysis technique was adequate

to show the applicability of GSI to actual cloud
radiances. However, in order to realize the full poten-
tial of GSI, it is necessary to develop a technique

which can estimate the GSI parameters quickly and
with con®dence for a variety of geophysical ®elds.
Therefore, in this paper we concentrate on proving the
accuracy of the SIG technique by applying it to simu-

lated ®elds with known GSI parameters (various aniso-
tropy) and with various statistical properties. More
details can be found in Lewis (1993).

We begin with a brief description of generalized
scale invariance and its application to the study of geo-
physical ®elds. Following this is a description of the

analysis technique and a discussion of its accuracy.

2. Generalized scale invariance

2.1. General features

In general, a scale invariant system needs a way of

identifying vectors of the same scale (size) and it needs
a way of measuring the scale of these vectors. It also
needs a way of relating the di�erent scales in such a

way that a characteristic size is not introduced to the
system. Usual (isotropic) scale invariant systems use

the length of vectors to determine their scale and there-
fore vectors of equal length are of the same scale.
Vectors of di�erent scales are related by a magni®-

cation (scaling) factor which depends on the ratio of
the lengths of the vectors. See top left of Fig. 1.
Generalized scale invariance (GSI) moves away from

this restrictive case, allowing more general concepts of
scale and scale changing operations. GSI is a formal-
ism which states the most general conditions under

which a system can be scale invariant. A GSI system
requires three elements:

1. The unit ball, B1, which de®nes the unit vectors. In

general, B1 will be de®ned by an implicit equation:

B1 � fxj f1�x� < 1g; @B1 � fxj f1�x� � 1g �1�

where @B1 is the ``frontier of the unit ball'', and f1
(a function of position, x; bold will denote vector
quantities) is the ``scale function''. If there is a scale

where all the vectors are of the same length, the ball
will be isotropic (e.g. a circle or sphere) and the cor-
responding scale is called the ``sphero-scale''.

2. The scale changing operator Tl which transforms
the scale of vectors by scale ratio l. Tl depends
only on the scale ratio: it involves no characteristic
size. This implies that Tl is a one parameter multi-

plicative (semi) group: Tl=lÿG, where G is the gen-
erator. Although the inverse operator Tÿ1l � Tlÿ1

need not exist, here we will only consider linear GSI

(G is a matrix; see ++Section 2.2), and an inverse
will generally exist (Tl is a group as opposed to a
semigroup). For isotropic systems, G is the identity.

It can be seen that even when only linear GSI is
considered, GSI is able to describe much richer
behaviors.

Given elements 1 and 2, we can now de®ne a

family of open balls Bl:

8x: fl�x� � f1�Tÿ1l x�; Bl � fx; fl�x� < 1g: �2�

Since the triangle inequality is not necessarily sat-

is®ed, we are generally not dealing with true norms.
It is nevertheless often convenient to use the
``norm'' notation:

kxk � fljx 2 @Blg �3�

hence:

kTlxk � lÿ1kxk: �4�

Alternatively, Eq. (3) means that

fl (x)=1\6x6=l (all vectors, x, which lie on the
same @B have the same scale). Note that since @B
are not generally circles or spheres, the usual vector

Fig. 1. Examples of balls and trajectories for linear GSI (see

++Section 2.2) with sphero-scale. Trajectories are ``radial''

lines and frontiers of balls are ellipses (second order poly-

nomials). Top left: isotropic case: c = 0.0, f = 0.0, e= 0.0.

Top right: self-a�ne case: c= 0.35, f = 0.0, e= 0.0. Bottom

left: rotated self-a�ne case: c = 0.35, f = 0.25, e= 0.0.

Bottom right: case with rotation of balls: c= 0.35, f = 0.25,

e= 0.6. d = 1 for all cases. See ++Section 2.2 for de®nition

of d, c, f and e.
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norm cannot be used. Thus, Bl identify vectors of
the same scale and Tl relates the vectors of di�erent

scales. As yet, however, the vectors have not been
given an absolute size; they have only been com-
pared to the unit ball. Thus, generally, the last el-

ement is needed.
3. A measure of size: The vectors can be associated

with a size by de®ning a measure, W, that assigns a

unique positive real number, monotonically increas-
ing from low to high scales, to every ball, B. For
example, we may use the volume of the balls raised

to any positive power to de®ne our measure of
scale. For GSI in two dimensions, it is convenient
to use the square root of the area of the ball. In
some cases, for example where there is strong over-

all strati®cation such as the vertical cross-section of
the atmosphere, it may be more convenient to use
the horizontal extent as a measure of the size (see

Schertzer and Lovejoy, 1985). Note that the unit
ball implies l=1, which does not refer to an absol-
ute scale. Thus, the unit ball is simply the ball to

which all other balls are compared. Alternatively, l
can be thought of as a ``normalized'' scale.
In order for the scale to be uniquely de®ned (each

vector related to only one scale), we must have
Bl1 � Bl2 whenever l1 > l2. If the balls are de®ned
by the function fl (Eq. (2)), this condition implies

@ fl
@l

> 0 8x: �5�

Eq. (5) ensures that the frontiers of the balls do
not cross (since fl (x)=1 and fl+dl (x)=1 will then
have no simultaneous solution for small dl ). This is
generally a nontrivial technical constraint on the
GSI system.

Rather than consider the dilation/contraction of the

balls, one may invoke the idea of a trajectory. If one
vector is related to another by Tl (e.g. x2=Tlx1, for
some l; i.e. x2 is a factor l reduction of vector x1),

then they lie on the same trajectory. Starting at the
unit ball, and varying l from 1 to 1 (in xl=Tlx1), a
complete trajectory can be traced out (see Fig. 1). All
the trajectories are obtained by systematically starting

on all vectors on the frontier of the unit ball. The con-
dition that the scale be uniquely de®ned implies that
the eigenvalues of G must have negative real part.

Each vector of the ®eld is a member of one and only
one trajectory. The use of trajectories rather than balls
has the key advantage (exploited here) that every G

generates a unique set of trajectories irrespective of the
unit ball. In practice this will mean that we can ®rst
determine G, and then B1.

2.2. Properties of linear GSI in two-dimensional real
space

Since we are assuming statistical homogeneity (see
Section 2.3), Tl will be independent of position and

thus will be a linear transformation. Therefore, linear
generalized scale invariance (Schertzer and Lovejoy,
1985; Lovejoy and Schertzer, 1985) will be used. In lin-

ear GSI, G is a matrix and thus has D 2 parameters
(where D is the dimension of space). Note that many
geophysical ®elds of interest are not homogeneous (e.g.

atmospheric motions, since the Coriolis force is a func-
tion of latitude) and hence linear GSI is not exact.
However, in principle, it is possible to consider a series
of sub-regions of the ®eld, where the linear GSI ap-

proximation will hold over a su�ciently large range of
scales.
The simplest nontrivial anisotropic system is two-

dimensional; this is also of practical signi®cance, since
satellite radiances typically have D = 2. Hence, here
we take G to be a 2 � 2 matrix. G will be written as a

linear combination of the basis of two-dimensional
matrices (pseudo-quaternions, Schertzer and Lovejoy,
1985; Lovejoy and Schertzer, 1985):

G � d1� cK� fJ� eI, �6�

where:

1 �
�
1 0
0 1

�
, K �

�
1 0
0 ÿ1

�
, J �

�
0 1
1 0

�
,

I �
�
0 1
ÿ1 0

�
:

�7�

Thus

G �
�
d� c f� e
fÿ e dÿ c

�
: �8�

Written as such, not only can a functional form of

Tl be found, but the parameters take on a more
obvious interpretation: d is a measure of overall con-
traction, c is a measure of the relative scaling of the

two coordinate axes, f is a re¯ection across a line diag-
onal to the axes and e is a measure of rotation (see
Fig. 1). We will choose d = 1. This corresponds to
choosing the square root of the area of the balls as the

measure of scale, W. A di�erent choice of power of the
area will correspond to a di�erent d.
Since the balls may be of any shape, it may require

an in®nite number of parameters to describe them.
Therefore, for the purpose of analysis, it is necessary
to approximate the balls (by approximating fl). In lin-

ear GSI, Tl is simply a linear transformation and since
we study the spectral energy density (see ++Section
2.3) our data will be invariant under the inversion
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x 4 ÿx. It is therefore natural to approximate f1 using
even order polynomials since their form is invariant

under linear transformations and inversions. This
ensures that fl can be described in the same form as f1.
The simplest example of such polynomials are the

quadratic forms, characterized by the equation

f1�x� � xTA1x � 1: �9�

In two dimensions, A1 � �A00 A01
A01 A11

� and the
vectors,x � � x

y
�, which satisfy this equation, lie on the

frontier of the unit ball. Only ellipses are permitted
since hyperbolae and parabolae do not form closed
curves, giving the constraints A00, A11 > 0 and A00A11-
A01
2 > 0 (note that since one can nevertheless de®ne an

inside and an outside, hyperbolae and parabolae may
®nd applications elsewhere). See ++Appendix A for a
derivation of the scale uniqueness condition for the

quadratic case. It was found in the study of actual geo-
physical ®elds (clouds and sea ice; Lewis, 1993) and by
P¯ug et al. (1993) that although the second order

equation is adequate for many cases, a higher order is
sometimes needed.

2.3. Generalized scale invariance in Fourier space

In geophysical applications, the scaling of the struc-
ture function:

S�x, Dx� � h�u�x� ÿ u�x� Dx��2i �10�

of a ®eld, u(x), is often studied (x is a position vector,
Dx is a lag with respect to x and ``h i'' denotes an
ensemble averaged quantity). If a scaling ®eld is stat-

istically homogeneous, then the structure function is
independent of x and will scale as:

S�TlDx� � lÿxS�Dx�, �11�

where x is the scaling exponent and Tl is the scale

changing operator which relates the statistical proper-
ties at one scale to those at another. Note that we
have eliminated the functional x dependence in the

notation for S to highlight the statistical homogeneity.
The solution to this functional equation is:

S�Dx�AkDxkÿx: �12�

Note that both anisotropic multifractals as well as
anisotropic monofractals (such as anisotropic exten-
sions of fractional Brownian motion) will generally

obey Eq. (12). Since translations of structures change
their Fourier phases but not moduli, for statistically
homogeneous functions it is convenient to consider

directly their moduli. The relevant scaling quantity is
the spectral energy density (the Fourier transform of
the auto-correlation function, or the second power of

the Fourier amplitude of the ®eld):

P�k� � jU�k�j2 �13�
where U(k) is the Fourier transform of u(x) and k is

the wave number. Ensemble averaging P(k) and inte-
grating over all angles will give the energy spectrum,
E(k ), see Section 1.

Fig. 2. Theoretical ensemble average spectral energy density

(top) and corresponding single realization (multifractal simu-

lation), bottom.
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An anisotropic extension of Tauberian theorems for
Fourier transforms of scaling functions (Schertzer and

Lovejoy, 1991; P¯ug et al., 1991) shows that if the
structure function obeys Eqs. (11) and (12) then:

hP� ~Tlk�i � lÿshP�k�i �14�

where TÄl=lGÄ is the (dual) scale changing operator in

Fourier space and s=Delÿx is the anisotropic scaling
exponent (Del=Trace(G ) is the ``elliptical'' dimension
of the space). GÄ is the generator in Fourier space, and

in the case of linear GSI, GÄ=G T, i.e. the transpose of
the real space generator (Schertzer and Lovejoy, 1991;
P¯ug et al., 1991). This can be shown by using the

integral de®nition of Fourier transform to ®nd the op-
erator in Fourier space which corresponds to the real
space scale changing operator (shown through a simple

change of variables). Note also the change in sign Ð a
contraction in real space corresponds to a dilation in
Fourier space, and vice versa. Once again, the general
solution of the above is:

hP�k�iAkkkÿs �15�

using the norm with respect to GÄ. Since Eqs. (14) and
(15) apply to Fourier space position vectors, k, rather

than the lag vectors, Dx, the balls can be given a physi-
cal interpretation in terms of the energy density.
Equation (15) shows that lines of constant hP(k)i are
lines of constant 6k6 (which are lines of constant
scale); hence they can be identi®ed with the frontiers of
the balls, and TÄl will map any contour to all the

others. For convenience, since for the remainder of the
paper we will only be considering scaling in Fourier
space, the tilde will be dropped with the understanding
that we are referring to the Fourier space generator.

3. The scale invariant generator technique

The purpose of this technique is to quantify scaling
anisotropy by determining the parameters of the scale
invariant generator and the balls that best describe a

scaling ®eld. Note that the scaling will not hold exactly
on any individual realization, but only when averaged
over an ensemble of realizations with the same genera-
tor and family of balls; there will be random variability

about the ensemble mean hP(k)i. Fig. 2 shows the
spectral energy density of a simulated single realization
(bottom) and its ensemble average counterpart (top).

Also, the anisotropy will change from place to place
and from time to time, thus G itself presumably varies
stochastically from realization to realization (e.g. scene

to scene, for satellite imagery). An attempt to empiri-
cally estimate the ensemble average by averaging many
arbitrary realizations would therefore result in a smear-

ing of the parameters (since each realization would
have a di�erent generator). Therefore, only one realiz-

ation will be analyzed at a time and ¯uctuations about
the ensemble average contours of the spectral energy
density will be compensated for by using statistical re-

gression techniques.
The nonlinear statistical regression involves ®tting

the theoretical function, Pt (k) (the ensemble average

spectral energy density generated from the GSI par-
ameters) to the N data points, P(ki), (the spectral
energy density of the real space data known at the N

discrete wave numbers, ki). Here, Pt (k)=lÿshP1i,
where hP1i is the value of the spectral energy density
at @B1 and l=6k6 depends on G and B1 (that is, the
scale of a certain point, k, will be di�erent for di�erent

G and B1). Usual statistical procedures involve the
method of least-squares, where the parameter estimates
are determined by minimizing an error function E 2

(not to be mistaken with the energy spectrum E(k ), see
++Section 2.3) which we take here as:

E 2�G,B1,hP1i,s�

� 1

N

XN
i�1
�ln P�ki � ÿ ln Pt�ki, G, B1, hP1i, s��2, �16�

where the full functional dependence of Pt has been

included. Other error functions may be de®ned, but we
chose the above based on the di�erence of logarithms
(see discussion below). Note that, from Eq. (14),

ln Pt=ÿsln l+lnhP1i , where the scale ratio, l, corre-
sponding to each ki must be found by solving a trans-
cendental equation (involving G and B1).

G is a function of c, f and e (since by convention
d = 1) and B1 is a function of the unit ball parameters
(see, for example, Eq. (9)). The parameter space is
therefore at least eight-dimensional (the exact dimen-

sion depends on the parametrization of B1). Searching
for the absolute minimum of E 2 in such a large par-
ameter space is computationally prohibitive, even when

a transcendental equation need not be solved.
Therefore, it is necessary to make some approximation
to the error function of Eq. (16). The Monte Carlo

di�erential rotation method (P¯ug et al., 1993)
attempted to do this by estimating the ball parameters
before searching the parameter space of G(c, f, e ).
However, this is not an ideal solution since the statisti-

cal scatter of P led to errors in the estimates of B1,
which introduced biases in the estimates of G.
The scale invariant generator technique (SIG) has

the signi®cant advantage of being able to estimate the
more fundamental G without prior knowledge of B1. It
reduces the parameter space to four dimensions (c, f, e,

s ) without introducing errors due to the prior esti-
mation of other parameters. If the anisotropy is not
extreme, it is possible to obtain a good prior estimate
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for s from the isotropic energy spectrum (s=b+1; see
P¯ug et al., 1991) and thus reduce the dimension of

the parameter space further. This method was used in
the analysis below, however, in general, the full four-
dimensional parameter space can be considered.

To see how SIG eliminates any reference to B1,
denote by k1(y ) a vector on @B1 parametrized by y
(the polar angle is convenient). Then we can parame-

trize all vectors, k, using l1 and y instead of the usual
Cartesian coordinates. This can be seen by writing
k�l1,y� � Tl1k1�y� and noting that all k lie on one and

only one trajectory which originates from a single
point on @B1 (y parametrizes the trajectory and l1 the
points along the trajectory). Further dilations by a fac-
tor l2 (i.e. k�l2l1,y� � Tl2k�l1,y� � lG2 k�l1,y�) obey:

hP�lG2 k�l1,y��i � lÿs2 hP�k�l1,y��i �17�

(from Eq. (14)). Since l2 and k(l1, y ) are arbitrary,
this equation shows (with taking logarithms) that for

all l and k

lnhP�lGk�i � s ln lÿ lnhP�k�i � 0 �18�
must be satis®ed, i.e. all pairs of points along trajec-
tories will (on average) satisfy Eq. (18). The basic ap-
proximation we make is simply to replace ensemble

averages by averages over trajectories. That is, we ®nd
G such that the quantity in Eq. (18) averaged over tra-
jectories is as close to zero as possible. The scale invar-
iant generator (SIG) error function used in the analysis

is de®ned as:

E2
SIG�G, s� � 1

n

X
i,j

�ln P�lGi kj � � s ln liÿ

ln P�kj ��2: �19�

The sum is over all the data points, P(kj), and all
the possible (discrete) scale ratios, li , which form the
n unique pairs [P(li

Gkj), P(kj)], i.e. ESIG
2 compares all

possible pairs of data points which lie along common
trajectories. The power of the SIG error function can
be seen in two ways. First, since there is no reference

to the unit ball in Eq. (19), no information concerning
it is necessary to compute G. Second, since it is
expected that we will not need all the pairs to obtain
adequate statistics, we can simply choose li and kj,

from which li
Gkj can be easily computed, and thus a

transcendental equation need not be solved. For sim-
plicity, we will now refer to ESIG

2 (Eq. (19)) as E 2.

Since it is not possible to analytically solve for the
minimum of E 2, it is necessary to consider E 2 as a
continuous function of the four parameters that

describes a four-dimensional hypersurface. The par-
ameter space must be searched for the appropriate
minimum (i.e. E 2 must be found numerically at inter-

vals in parameter space to trace out the behavior of
the hypersurface). In general, E 2 can be a complicated

function with multiple extrema. Therefore, if the absol-
ute minimum is to be found, the intervals must be ®ne
enough such that the estimate of the hypersurface exhi-

bits the same extrema. The hypersurface, however, is
expected to be continuous only when an in®nite num-
ber of independent pairs is used. Since this would

require knowledge of P over an in®nite range of scales,
the actual explicit values of E 2 are expected to be stat-
istically scattered around the theoretical continuous

hypersurface. Due to these high frequency ¯uctuations,
a function is ®t to the explicit values of E 2 in an
attempt to estimate the continuous hypersurface. The
estimated minimum of E 2 can then be found by calcu-

lating the minimum of the ®tted function.
It is important to note that P(li

Gkj) and P(kj) are
data points (i.e. random variables) and therefore both

will ¯uctuate about their average values. This will
cause the minimum variance (the minimum value of
E 2) to be larger than the case when only one data

point is involved. However, it should be possible to
compensate for this by use of the greater number of
pairs that is available. There is a complication in that

the ¯uctuations of the data points will be more vari-
able than those described by multivariate Gaussian dis-
tributions. Therefore, there is no rigorous theoretical
justi®cation for using the method of least-squares.

However, it is still plausible to assume that the beha-
vior of the hypersurface near the minimum will not be
substantially altered if the ¯uctuations are not too vio-

lent. Logarithms of P were used in E 2 since numerical
tests showed that taking the logarithm has the e�ect of
decreasing the variability. The results shown below jus-

tify the use of the method of least squares and indicate
that the bias due to taking the logarithm was small.

4. Implementation

Finding the absolute minimum of E 2 will give the
generator parameter estimates. In order for the tech-
nique to be practical, it must ®nd the minimum with

reasonable accuracy in an e�cient manner. There are
many standard methods of searching a parameter
space for the minimum of hypersurfaces such as E 2.
The most appropriate method, however, depends on

the nature of the hypersurface and the statistical ¯uc-
tuations about it. Therefore, the characteristics of E 2

were studied. It was found that performing an initial

estimate using coarse intervals covering the parameter
space, followed by a (multidimensional) parabolic
expansion about the initial estimate, was necessary.

Although it is less expedient than methods that only
require iterations of a one-dimensional search, it is
more reliable. For more details see Lewis (1993).
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Before implementation, it is necessary to consider
the following details:

1. The number and distribution of pairs. The error
function, E 2, compares all pairs of points along a
trajectory. This would mean comparing approxi-
mately (L 3)/4 pairs, where there are L 2 data points.

It is expected that not all pairs need be considered
in order to obtain a reasonable estimate of the cor-
responding value of the continuous hypersurface.

Not only will this lead to faster computation, it will
also eliminate the di�culty of ®nding all the pairs.
Also, due to undersampling at the large wave num-

bers and the possible biases at the small wave num-
bers that are sometimes introduced in the data
acquisition, it is prudent to choose the pairs such

that the large and small wave numbers are not over-

sampled. Thus, the adequate number of pairs, and a

method of choosing the pairs, must be found.

2. The spacing of points in parameter space which is

needed for a reasonable estimate of the continuous

hypersurface. If the spacing is too coarse, important

details of the hypersurface may be missed, but since

computation time increases with resolution, it may

be counter-productive to have the spacing too ®ne.

3. The optimum range of the parabolic expansion.

Since the hypersurface is not parabolic, the range

should correspond to a neighborhood of the mini-

mum where the hypersurface can be well approxi-

mated by a parabola. However, if the range is too

small, it is possible that the curvature would not be

Fig. 3. Simulation 1. Top left: in real space. Top right: spectral energy density. Bottom left: enhanced spectral energy density.

Bottom right: spectral energy density with estimated balls. See Table 1 for results.
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detectable over the ¯uctuations. If the range is too

great, the higher order terms in the expansion of the

hypersurface become non-negligible and errors are
introduced.

4. The volume of the initial search. Before the initial

search, it would be bene®cial to ®nd the region in
parameter space which leads to valid GSI systems

(imposed by the non-crossing condition of the

balls). Searching outside this region would be a
waste of computation time.

In order to make intelligent choices for Eqs. (1)±(4),
each was investigated through various methods and

numerical experiments. The actual choices that were

made may not be of general interest. Therefore, should
readers wish more details, they are referred to Lewis

(1993 ++Section 3.2.2), which contains a thorough

explanation of methods and choices, with examples
and results. We should note, however, that our philos-
ophy was to make choices such that the errors in the

estimates were within a range that we judged to be
reasonable. If the errors were too large, the estimates
were considered inaccurate and if they were too small,
it was considered to be a waste of computing time,

since small changes in the parameters cause no obser-
vable morphological di�erence in the ®elds.

5. Estimation of the balls

The next step is the estimation of the family of balls.

Fig. 4. Simulation 2. Top left: in real space. Top right: spectral energy density. Bottom left: enhanced spectral energy density.

Bottom right: spectral energy density with estimated balls. See Table 1 for results.
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Once any one member of the family of balls is found,

the whole family can be generated, since the generator

has already been estimated. Thus, the estimation con-

sists of ®nding the parameters that describe some ball,

which will be approximated by a second or fourth

order polynomial (see Section 2.2).

Unlike the generator parameters, an analytic method

may be used to estimate the ball parameters. These

estimates may be found by ®tting a curve of the appro-

priate form to a levelset of the spectral energy density

(where a levelset at P1 is the set of data points with

amplitude in the range P12DP, DP small ). See Lewis

(1993) for the method of curve ®tting and method of

determining the appropriate form of the curve.

Because the large ¯uctuations about the ensemble aver-

age contours cause undesirable errors in the parameter

estimates, ideally, the spectral energy density, P, could

be smoothed before the ®tting procedure.

Conventional smoothing (e.g. averaging adjacent data

points) causes non-uniform spreading of the contours

of P and consequently, the smoothed ®eld will not be

described by the same GSI parameters as the actual P.

Assuming that the estimates of the generator par-

ameters, found using the SIG error function of Eq.

(19), are reasonably accurate, they can be used to

``enhance'' the contours of P without a�ecting the scal-

ing of the ®eld. Regardless of this assumption, ®tting a

curve to a levelset of the enhanced P will ®nd the best

estimate of a unit ball given the estimated generator

parameters.

Fig. 5. Simulation 3. Top left: in real space. Top right: spectral energy density. Bottom left: enhanced spectral energy density.

Bottom right: spectral energy density with estimated balls. See Table 1 for results.
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The enhancing technique consists of applying a run-
ning average to the data points that lie on the same
trajectory. Again we will use the principle that the

amplitude of any two data points on the same trajec-
tory (speci®ed by y ) will be, on average, related by:

hP�lGk�y�i � lÿshP�k�y��i: �20�
As before, an approximation is made such that only

M data points are used in the running average. That
is, to generate the enhanced P, Pen (kj) , the amplitude

of each data point, P(kj), is replaced by

Pen�kj � � 1

M

XM
i�1

lsiP�lGi kj � �21�

where li are a series of dilation factors. It can be seen

from the results that the enhancing technique has a
substantial smoothing e�ect. See bottom left of Figs.
3, 4 and 5.

The parameters of a unit ball, B1 at some chosen P1,
were found by ®tting the appropriate polynomial to a
levelset of Pen (kj). Recently, an extension for ®nding

the balls has been developed. This new procedure has
the advantage that it is global (not restricted to one
levelset). It is therefore more accurate. However, it is
not as fast as the procedure used here and the

increased accuracy has not been deemed necessary for
the present purposes.

6. Results on simulations

The scale invariant generator technique was tested

using simulations of continuous multiplicative cascades
which yield universal multifractals (Schertzer and
Lovejoy, 1987; Wilson et al., 1991; Pecknold et al.,

1993). Multifractal ®elds were chosen as the test ®elds
because we feel that they are the most relevant in geo-
physics and also, due to the extreme variability of mul-

tifractals, they will, in fact, be more challenging to
analyze than other anisotropic scale invariant ®elds
(e.g. monofractals, such as fractional Brownian motion

or anisotropic monofractals produced by the fractal
sum of pulses model (Lovejoy and Schertzer, 1985)). It
should be noted that the scale invariant generator tech-

nique is not restricted to multifractals and can be used,
without modi®cation, to analyze the spectral energy
density of any scaling ®eld (or, using indicator func-

tions, anisotropic fractal sets), regardless of the type of
scaling expected, as long as statistical translational
invariance of the underlying generation process is

assumed.
The basic steps in the simulation of universal multi-

fractals are: (a) the production of a ``dÿcorrelated''
(extremal) LeÂ vy noise, the ``sub-generator'', that deter-

mines the type of probability distribution (parame-
trized by a and C1), (b) anisotropic ®ltering to produce
an (anisotropic) 1/f noise, the multifractal generator,

(c) exponentiation to produce the conserved multifrac-
tal, (d) a ®nal (anisotropic) fractional integration
(di�erentiation), of order H (positive H implies a scale

invariant fractional integration). For details of the
method used to render the ®ltering algorithm anisotro-
pic, see Pecknold et al. (1993). For multifractal ®elds,

the probability that el, at resolution l, will exceed l g

is:

Pr�elgrlg�1lÿc�g�, �22�

where c(g ) is the codimension which is some function
of g0 the order of singularity (Schertzer and Lovejoy,
1987). Therefore, in general, there will be a unique

value of c for each g, thus an in®nite hierarchy of frac-
tal dimensions corresponding to all g $ R . Scaling
®elds with this property are multifractals and they are

characterized by their extreme variability (Schertzer
and Lovejoy, 1987). In the case of a universal multi-
fractal, the three parameters a, C1, and H determine

Table 1

Estimated parameters with standard deviations (square root of uncertainites) for simulations. Simulations 1 and 2 have sphero-

scale and thus all balls are quadratic. Sphero-scales are given in unitsÿ1, where external scale is de®ned to be at one unit. Sphero-

scale can be found from estimated ball if quadratics are used and sphero-scale exists (see Lewis, 1993). Note that errors were not

calculated on sphero-scale measurements since errors that were found on ball parameters (01%, from mean-squared deviation

from contour of ensemble average P ) are magni®ed non-trivially with scale transformation. For simulation 3, estimated ball is

given by 2.58kx
4+21.74kx

3ky+9.46kx
2ky

2ÿ11.38kxky3+9.76ky
4=10ÿ3 and error is also01%

Simulation Parameters s c f e Sphero-scale

1 exact 2.64 0.3 0.2 0.3 0.146

estimated 2.6920.04 0.2820.01 0.2020.01 0.3120.03 0.149

2 exact 2.64 ÿ0.2 0.2 ÿ0.6 0.098

estimated 2.5320.04 ÿ0.1920.01 0.1820.01 ÿ0.5420.06 0.100

3 exact 2.64 0.1 0.1 0.5 N/A

estimated 2.6320.03 0.0520.01 0.0820.01 0.5120.01 N/A
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c(g ): a(0 R a R 2) is a measure of the degree of multi-
fractality (a=0: monofractal, a=2: log normal multi-

fractal), C1 is a measure of the sparseness of the mean
of the ®eld and H is a measure of the degree of non-
conservation of the ®eld (see Schertzer and Lovejoy,

1991).
A variety of di�erent generator and ball parameters

were tested using SIG, while the multifractal par-

ameters were held constant at: a=1.5, C1=0.1,
H= 0.4. These values are close to those found empiri-
cally in cloud radiances (Tessier et al., 1993) and tur-

bulent winds and temperatures (Schmitt et al., 1992;
Schmitt et al., 1995; Schmitt et al., 1996). The e�ects
on the accuracy of the technique due to changes in
these parameters are studied below. The simulations

considered were 512 � 512 pixels in size (which is a
typical size of many geophysical data sets/satellite
images). The simulations were all generated from the

same random sub-generator so that the changes in the
characteristics of the ®elds due to the di�erent GSI
parameters could be seen more clearly. The spectral

energy density, P, was found by using a fast Fourier
transform technique (Press et al., 1986).
The results of each simulation are presented in Figs.

3, 4 and 5 and Table 1 (for further results see Lewis,
1993). The accuracy of the estimated parameters can
be seen quite well in the images where the balls gener-
ated by the estimated parameters are drawn over the

spectral energy density and also by comparison with
the enhanced P. A discussion of the results and the ac-
curacy of the estimated uncertainties is given in

++Section 7.
Note that if the estimated ball parameters are accu-

rate, they should describe a contour of constant P.

Thus, the accuracy of the ®t can be determined by ob-
serving if the value of an ensemble average P, with the
theoretical generator and ball parameters, is constant
along the estimated ball. The mean-squared deviation

from the constant value of P can be used as a measure
of the goodness of the ®t. The percentage deviations
from the constant were found to be very close to 1%

in all cases.

7. Discussion of results and investigation of the accuracy

of the uncertainties

From the results on the simulations above, it can be
seen subjectively that, the estimated balls, drawn over
P, seem to reasonably match the contours of P.

However, in many cases, the discrepancies between the
estimated and theoretical parameter values are some-
what larger than what would be expected from the

estimated standard deviations. A closer investigation is
necessary because it is not known if the discrepancies
are due to an underestimation of the uncertainties

(higher statistical ¯uctuations than assumed) or if they
are an indication of biased parameter estimates. Thus,
it is necessary to investigate the accuracy of the esti-

mated uncertainties.
Since the minimum of E 2 could not be found ana-

lytically, neither could the uncertainties. However, they

can be estimated by making an analogy to the case
when an analytic solution is possible (i.e. the case
when parabolic expansion describes the hypersurface

exactly). The estimated uncertainties on the GSI par-
ameters will then be

s2gk �
EkkE2

min

n
�23�

where gk (k= 1, 2, 3) are (c, f, e ) respectively, Ekk are

the diagonal elements of the error matrix E=aÿ1,
aij=(1/2)(@2E 2/@gi@gj) (evaluated at the minimum), n is
the number of pairs of data points compared (as in
E 2) and Emin

2 is the value of E 2 at its minimum.

The estimated uncertainties, s2gk , are expected to be
reasonable estimates of the actual uncertainties if the n
pairs of data points compared are e�ectively indepen-

dent, if the hypersurface can be reasonably approxi-
mated by a parabola and if the statistics are
approximately Gaussian. These ideal conditions, how-

ever, will not be met and it is unknown exactly how
the deviations from the ideal will e�ect the accuracy of
the s2gk . It is possible to check the accuracy by using
the fact that s2gk is an estimate of the realization to re-

alization variability in the parameter estimates due to
the statistical ¯uctuations of the data. That is, if an
ensemble of realizations are analyzed, then the actual

uncertainties are the variances of the parameter esti-
mates about their respective mean values. Therefore, in
order to obtain a direct estimate of the actual uncer-

tainties, the analysis was performed on ten di�erent
simulations that were created with the same GSI and
multifractal parameters but with di�erent random sub-

Table 2

Parameter estimates and standard deviations for 10 di�erent

realizations (with GSI parameters: c = 0.3, f= 0.2, e = 0.3)

found using SIG

Simulation c sc f sf e se

1 0.319 0.010 0.168 0.009 0.395 0.025

2 0.306 0.010 0.166 0.009 0.328 0.023

3 0.297 0.010 0.203 0.009 0.300 0.023

4 0.316 0.010 0.214 0.009 0.379 0.024

5 0.324 0.010 0.183 0.009 0.366 0.022

6 0.329 0.010 0.199 0.009 0.305 0.025

7 0.295 0.011 0.167 0.009 0.292 0.026

8 0.342 0.010 0.183 0.009 0.489 0.023

9 0.322 0.011 0.183 0.009 0.288 0.026

10 0.292 0.012 0.192 0.009 0.331 0.027
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generators. Results are shown in Table 2. The standard
deviations, zgk , were calculated from the sample var-
iances, z2gk , of the parameter estimates of the ten realiz-
ations about their mean values, g-k. zgk are listed in

Table 3 along with typical values of the estimated sgk
for comparison. g-k are listed in Table 4 with the actual
simulation parameter values. See top left of Fig. 3 for

one example of a realization. The actual parameter
values used are similar to those found for cloud radi-
ance ®elds for stratus type clouds.

We see that the sgk are underestimates of the realiz-
ation to realization standard deviations, zgk . However,
they are within about a factor of two. If we assume
that all the uncertainties listed in ++Section 6 are

underestimated by a similar magnitude, we can con-
clude that the bias in the GSI parameter estimates is
small (even though it cannot be altogether ruled out).

Below, the uncertainties calculated using Eq. (23) will
be used as the estimated uncertainties with the under-
standing that they are underestimates. Because the

results of this section will depend on the multifractal
parameters (statistical properties of the ®eld), in gen-
eral, they cannot be used to improve the estimates of

the uncertainties.
Another point of interest is the discrepancies

between the mean values of the estimates, g-k, and the
theoretical values of the parameters. These discrepan-

cies could be an indication of bias since the standard
deviation in g-k is:

1�����
10
p Bgk �24�

i.e. g-k do not lie within one standard deviation of their
theoretical values. Note, however, that the bias is still

somewhat small (00.01 for c and f; 00.03 for e; two

ensemble average P di�ering by this amount will be
virtually indistinguishable). Although this bias tends to

overestimate c and e, and underestimate f, there seems
to be no evidence of a systematic overestimation (or
underestimation) of the parameters in ++Section 6.

This implies that the bias may be di�erent for each
generator. Some bias could be due to the non-para-
bolic characteristic of the hypersurface. This bias could

then be reduced by decreasing the range of the para-
bolic expansion. Because this is expected to increase
the realization to realization variability, it is unclear if

the change would yield better estimates.
We can therefore conclude that SIG yields reason-

able results and thus the use of a least-squares method
based on the di�erence of logarithms is supported even

though it is not theoretically justi®able.

8. The e�ects of the multifractal parameters on the GSI

parameter estimates and their corresponding

uncertainties

We will now investigate the accuracy with which the
SIG technique measures the GSI parameters of ®elds
with di�erent statistical properties (e.g. di�erent aniso-

tropic scaling exponents and noise characteristics). For
universal multifractals, these properties are described
by the multifractal parameters: a, C1 and H (see e.g.

Schertzer and Lovejoy (1991) for a comparison of the
estimated multifractal parameters of various geophysi-
cal ®elds see Lovejoy and Schertzer (1995)).

It is expected that the anisotropic scaling exponent,
s, will be a major determinant of the accuracy since it
determines the rate of decay of the amplitude of the
spectral energy density, P, with scale. As s decreases,

the contours of P become less distinguishable: we
expect some s at which the technique will no longer
yield reasonable estimates. Equivalently, the curvature

of the hypersurface will decrease with decreasing s and
thus, the uncertainties in the GSI parameter estimates
will increase.

For universal multifractals, the exponent, s, is deter-
mined in the following manner:

s � 2ÿ C1

aÿ 1
�2a ÿ 2� � 2H �25�

(see e.g. Tessier et al., 1993). Thus, the uncertainties
will predominately depend on C1 and H. H is expected
to e�ect the results solely in its contribution to s, how-

ever, C1 is a direct measure of the amplitude of the
noise (i.e. the contours will be less distinguishable due
to an increase in C1). The weak dependence of the

uncertainties on a will not be studied.
The SIG technique described was used to analyze 10

simulations (c = 0.3, f= 0.2, e = 0.3) with di�erent

Table 3

Standard deviations, Bgk , calculated from variance of estimates

of parameters (listed in Table 2) about g-k (listed in Table 4)

and typical estimated standard deviations, sgk , expected from

Eq. (23) (as in Table 2)

gk c f e

Bgk 0.015 0.016 0.059

sgk 0.010 0.009 0.024

Table 4

Mean values, g-k, of estimates of parameters of ten realizations

listed in Table 2 and actual simulation values

gk c f e

Mean values 0.314 0.186 0.347

Actual values 0.3 0.2 0.3
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values of C1 (see Table 5). H and a were held constant

at 0.4 and 1.5, respectively. The uncertainties were
then studied as a function of H (for constant C1=0.1;

a=1.5). See Table 6. It was found that the technique
was only able to obtain valid results for Hrÿ0.1
(sr1.59). Below this value of H, small decreases in H
resulted in a large increase in the uncertainties. The

curvature of the hypersurface presumably became neg-
ligible compared to the ¯uctuations about the hyper-

surface.
Although valid results were obtained for all values

of C1 that were studied, it is expected there will also be
a critical C1 above which the uncertainties will increase

quickly. There will also be a combination of e�ects
due to C1 and H. This, however, was not studied

further.
The above results indicate that SIG can yield valid

estimates for a range of multifractal parameters that is
adequate to include a large variety of geophysical

®elds. However, simple changes such as increasing the
number of points considered or changing the range of

parabolic expansion can extend the range of validity.
For example, by changing the range of the parabolic

expansion, valid results were obtainable for Hrÿ0.3.

See Table 7. Note the discrepancies of the estimated
parameters from the theoretical (simulation) par-
ameters are much greater for this case. This is likely
due to the increased range of expansion coupled with

the non-parabolic nature of the hypersurface.
Finally, it should be noted that the above results

were obtained for a given set of GSI parameters and

would be expected to change slightly depending on
them. However, the overall observations are not
expected to change.

9. Conclusion

In this paper, the scale invariant generator technique
(SIG) was developed to estimate the parameters of a

linear generalized scale invariant system. It is able to
estimate the generator parameters without prior
knowledge of the GSI balls. This is an advantage over

the previous method (the Monte-Carlo di�erential ro-
tation technique). It then uses the estimated generator
parameters to enhance the spectral energy density and

thus it was able to produce good estimates of the GSI
balls. Universal multifractal simulations, generated
with a variety of GSI and multifractal parameters,
were used to test the technique. It was found that SIG

reasonably estimated the GSI parameters for a variety
of anisotropy as well as over a large range of multi-
fractal parameters. Speci®cally, virtually all of the geo-

physical ®elds whose multifractal parameters are
known have parameters which allow them to be ana-
lyzed by SIG. Thus, it can be concluded that SIG

could plausibly be used to quantify the anisotropy of
many geophysical ®elds.
It was stated that the GSI parameters may be used

as a measure of texture and morphology. While this

was not tested here, by inspection of the simulated
images, it can be seen that the di�erent GSI par-
ameters correspond to di�erent characteristics of the

®elds. For example, when applied to satellite cloud
radiances (Pecknold et al., 1997b), it yields a scale
invariant cloud classi®cation. Although cases involving

overall strati®cation (such as time/space or vertical/
horizontal cross-sections) were not explicitly discussed,
they are also found (work in progress) to be amenable

Table 5

Dependence on C1 of parameter estimates and standard devi-

ations of universal multifractal simulations found using SIG.

H= constant=0.4

C1 s c sc f sf e se

0.05 2.78 0.293 0.011 0.186 0.009 0.383 0.025

0.10 2.69 0.293 0.012 0.190 0.009 0.334 0.028

0.15 2.61 0.302 0.013 0.199 0.009 0.319 0.029

0.20 2.53 0.272 0.015 0.208 0.010 0.279 0.035

0.25 2.45 0.275 0.015 0.216 0.010 0.291 0.033

0.30 2.38 0.256 0.018 0.210 0.010 0.269 0.036

0.35 2.30 0.295 0.019 0.218 0.011 0.312 0.034

0.40 2.23 0.304 0.021 0.232 0.011 0.307 0.037

0.45 2.16 0.340 0.021 0.231 0.012 0.346 0.033

0.50 2.10 0.274 0.026 0.227 0.012 0.262 0.039

Table 6

Dependence on H of parameter estimates and standard devi-

ations of universal multifractal simulations found using SIG.

C1=constant=0.1

H s c sc f sf e se

0.4 2.69 0.293 0.012 0.190 0.009 0.334 0.028

0.3 2.49 0.292 0.014 0.191 0.010 0.332 0.029

0.2 2.25 0.302 0.015 0.186 0.011 0.345 0.033

0.1 2.02 0.282 0.018 0.194 0.013 0.299 0.039

0.0 1.80 0.286 0.022 0.198 0.015 0.283 0.045

ÿ0.1 1.59 0.270 0.038 0.188 0.023 0.278 0.084

Table 7

Dependence on H of parameter estimates and standard devi-

ations of universal multifractal simulations found using SIG

with extended range of parabolic approximation

(C1=constant=0.1)

H s c sc f sf e se

ÿ0.2 1.38 0.274 0.02 0.132 0.02 0.294 0.05

ÿ0.3 1.16 0.266 0.02 0.129 0.02 0.220 0.05
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to SIG analysis (although s can not be estimated using
the isotropic approximation). Such space-time analyses

(Tessier et al., 1993; Marsan et al., 1996) are important
for dynamical multifractal modeling and forecasting
(Marsan et al., 1996).

Now that a numerically e�cient procedure exists for
estimating GSI parameters, future research should
include the application of SIG to a large number of

scenes of a variety of geophysical ®elds. This is not
only necessary for the possible application to classi®-
cation mentioned above, but this will also allow the

statistical properties of the generator to be studied. In
addition, the full nonlinear GSI, rather than the linear-
ization assumed here, could be applied. Also, a real
space version of SIG is being developed which will

make it possible to ®nd the generator for di�erent
order statistics since they will not necessarily have the
same anisotropy as the second order statistics discussed

here. This would be necessary if the full potential of
GSI and the scale invariant generator technique is to
be realized.
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Appendix A. The scale uniqueness condition for the case

of quadratic balls

Given that the GSI balls are described by the quad-
ratic Eq. (9), we can derive a general scale uniqueness
condition. De®ning Al by fl (x)=xTAlx, we have:

Al � �Tÿ1l �TA1T
ÿ1
l � lGT

A1l
G: �A:1�

The scale uniqueness condition (Eq. (5)) reduces to:

xT sym�AlG�x > 0, �A:2�
where sym(AlG)=((AlG+GAl)/2). Condition (A.2) is
satis®ed for all x as long as the eigenvalues of

sym(AlG) are positive (in two dimensions this is the
same as requiring both the trace and determinant to be
positive). To obtain the noncrossing condition in the

general quadratic case one can write:

sym�AlG� � D1� FJ� CK, �A:3�
where 1, J and K are as in Eq. (7) and D, F and C are
real numbers. Since Trace(sym(AlG))=2D and
Det(sym(AlG))=D 2ÿC 2ÿF 2 we obtain D> 0,

D 2 > C 2ÿF 2. If an isotropic scale exists, then we may
take Al=1, and this condition simpli®es to d > 0,
d 2ÿc 2ÿf 2 (a restriction on only G; see Eq. (6)). See

Pecknold et al. (1997a) for the non-crossing condition
when the balls are described as fourth order poly-

nomials.
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