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Scale invariant symmetries are usually restricted to systems involving extremely special 
types of scale changes; self-similar and self-affine fractals involving isotropy and differential 
stratification respectively. In contrast, geophysical and astrophysical systems can be scale 
invariant but display complex anisotropy including differential rotation. The formalism 
required to handle such symmetries is generalized scale invariance; using the new Monte 
Carlo differential rotation technique we test it on satellite cloud radiances over the range 
1-1200 km. Our results underscore the limited usefulness of self-similar and self-affine scaling 
ideas in atmospheric dynamics since we find substantial differential rotation which is, 
nevertheless, scaling. 

Scale invariance is a symmetry  principle in which the small and large scales 
are related by a scale changing operat ion which depends only on the scale 
ratios; there is no characteristic size. Up until recently, almost all at tention has 
been  focused on extremely simple types of  scale changes [1], primarily ordinary 
" z o o m s "  (magnifications) associated with self-similar (or asymptotically self- 
similar) fractals and multifractals. Practically the only other  scale changing 
opera t ion to receive attention by physicists are self-affine t ransformations in 
which the zoom is followed by differential "squashing" along coordinate axes. 

In contrast,  geophysical [2] and astrophysical [3] systems can be scale 
invariant #~ but are highly anisotropic; in addition to differential stratification, 
they often involve differential rotation and other  more  complex scale changing 
operat ions that can vary f rom place to place even randomly. The need to deal 
with scale invariant anisotropy has led to the development  of the formalism of 
generalized scale invariance (GSI)  [2, 5-7].  The implications of GSI for 
a tmospher ic  dynamics are particularly exciting since it holds the promise of  
unifying large and small scale motions.  The latter are still widely regarded as 
being separate  isotropic self-similar two- and three-dimensional  turbulent  
regimes respectively. 
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OtA recent preprint [4] develops in the context of Newtonian space/time, a formalism not 

unlike GSI. 

0378-4371/92/$05.00 O 1992- Elsevier Science Publishers B.V. All rights reserved 



122 S. Lovejoy  et al. / Scale invariance and rotation in cloud radiances 

GSI  has the following basic ingredients: 

(i) A unit "bal l"  B1, which defines all the unit vectors. If an isotropic unit 
ball exists, we call the corresponding scale the "sphero-scale" .  

(ii) A (semi) group of scale changing operators  T~ = A -c ,  which reduces 
the scale of  vectors by scale ratio A: B~ = T x ( B 1 )  is the ball of all vectors at 
scale A. Virtually the only other  restriction on Tx is that the B~ are strictly 
decreasing (B A D B~,; A <  A'), hence that the real parts of the (generalized) 
e igenspectrum [5] of G are all >0.  

(iii) A measure  of scale such as some power  of the volume of B~; the exact 
definition is somewhat  a mat ter  of convenience or convention [5]; although the 
most  obvious is to use the fact that if ~b D indicates the ordinary volume 
opera to r  in a space dimension D, and de~ = Tr  G, then a convenient "elliptical" 

scale ~bet is given by the following relation: 

del ) t d e l 4  de l / ' l ~  ) = A d e l  (])el (BA) = t~D(BA) = A d e I ~ D ( B I )  = "" " / ' e l  \ ~ 1 1  • (1) 

Note  that  in GSI  size is a measure  (not metric) quantity and the type of scale 
invariance is not specified, i.e. GSI  can apply to fractal sets, multifractal 
measures  or other  types of scale invariant systems. When G is a matrix we have 
" l inear  G S I " ,  the anisotropy is position independent.  Linear GSI can always 
be regarded as a local approximation to the full (nonlinear) GSI;  it is 
equivalent  to using tangent spaces. When the matrix is the identity, we have 
self-similar scale invariance; when G is a diagonal matrix, we have a "self- 
affine" system; and when off-diagonal elements are present,  we have differen- 
tial rotation. In all cases, de~ is an important  characteristic since it quantifies the 
overall  rate of change of volumes of structures. 

Up until now, methods for empirically evaluating G have been limited to 
est imates of de~. For example,  for atmospheric motions,  we [2] obtained 
del = ~ = 2.555 . . . in (x, y, z) space, and for rain [8] del = 2.22 -+ 0.07, and 
also for rain, for space time transformations [9] ((x, y, t) space), 2.5 -+ 0.3. In 
each case, de~ characterizes stratification, del = 3 corresponding to isotropic 
(self-similar) scaling, de~ = 2 to complete stratification into horizontal layers. In 
this note,  we repor t  on results of a new "Monte  Carlo differential rota t ion"  
technique which for the first t ime enables us to empirically estimate the 
off-diagonal elements  of linear GSI.  

We illustrate the method on visible and infra red satellite pictures at 1.1 km 
resolution #2 (fig. la ,  b, c). We assume statistical translational invariance of the 

• 2 These pictures are from the NOAA 9 satellite and were remapped on regular 256 × 256 and 
512 x 512 point grids before the analysis was performed. Details of this and the analysis techniques 
may he found in ref. [10]. 
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radiance fields; in Fourier space, this implies random phases, hence we 
examine the modulus of the Fourier amplitudes squared (the spectral energy 
density, denoted P(k )  at wavenumber k, see  fig. 2a, b, c). If x~ = T~xl ,  then 
the corresponding Fourier relation [7] k~ -- T~kl ,  where the Fourier operator 
T~ has generator G = G T (where "T"  indicates "transpose") .  Furthermore,  
using a decomposit ion into quaternions (or equivalently into Pauli matrices), 
we can obtain the following explicit formula for linear GSI in two dimensions: 

f - e  d =  d + c  f + e  
G =  f + e  d - c  ' f - e  d - c  ' 

= A ~ = Ad(~ cosh(au) + ( G -  d~) sinh(au) 1 ,  
\ a / 

a 2 = c  2 + d  2 - e  2, u = l o g A  (3) 

(~ is the identity matrix). When a is real, stratification dominates, whereas 
when a is imaginary, rotation dominates; these two qualitatively different 
behaviors have been proposed as a basis for classifying galaxies into barred or 
spiral types [3]. 

If Ta is the real space scale changing operator for second order moments ~3 
(structure functions), then the corresponding Fourier space operator satisfies 

e ( T x k )  = A-SP(k),  (4) 

where s is an (anisotropic) spectral exponent. Hence in fig. 2, Tx will map one 
set of isolines of P onto another. 

Unlike the vertical or time axes, which are stratified with respect to the 
horizontal, the two horizontal directions display no obvious overall stratifica- 
tion; we therefore took our definition of size to be the square root of the area 
of the B~, hence del = 2, d = 1. To test linear approximations to GSI, we 
therefore seek to determine c, e, f, s, the energy density of the unit ball, as well 
as the shape of the unit ball. In the simplest cases (see fig. 2a, b), a nearly 
circular "sphero-scale" seems to exist, hence we only require an estimate of the 
corresponding radius (a total of six parameters). In fig. 2c however,  no 
sphero-scale is apparent; indeed, given the roughly log spiral shape of the 
cyclone, one does not expect one to exist. In the latter case, we used the 
following parametrization~'4: 

r(O) = r o + a I cos(20) + b I sin(20) + a 2 cos(40) + b a sin(40) . (5) 

,3 Since the radiance fields are multifractal [11, 9, 12], we expect the operator  to depend  on the 
order  of  singularity, and hence on the order  of  statistical moments .  

#4 This  polar coordinate parametr izat ion of the unit  ball is the first few terms in a Fourier  series 
respect ing the  Fourier  symmet ry  P(k)  = P ( - k ) .  
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Figs. la, 2a. 
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Figs. lb, 2b. 

2b 
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The full details of the parameter estimation scheme (called the "Monte Carlo 
differential rotation" technique) are given in ref. [10]; in outline a quadratic 
error function is defined and the parameters are adjusted for best fit. The only 
complication is that while it is easy to compute ka given G, A, k~ (by applying 
T~), the inverse (finding A given k~, k~, G) involves solving a transcendental 
equation and is numerically prohibitive due to the large number of times it 
must be solved by the regression algorithm. The error in the parameters is 
therefore only statistically estimated using a Monte Carlo method (hence the 
name). 

The resulting parameters are shown in table I, the corresponding "balls" are 
superposed in fig. 2, showing the fairly accurate fits that are achieved. We may 
note the following: 

(a) It has been found [12] (using isotropic spectra) that the parameter s is 
mostly a function of wavelength of the radiation; this is confirmed here. 

(b) In the two cases where sphero-scales exist, they are right in the middle 
of the "meso-scale", the horizontal scale corresponding to the exponential 
fall-off height for the pressure field (=10 km). This is totally at odds with the 
standard view which postulates a qualitative change ("dimensional transition", 

Table I 
A compar ison of the characteristics of  the three satellite images discussed in the text. a (see eq. 
(3)) was found to be real in all cases, the total rotation between small and large scale structures is 
therefore  bounded ,  IA01max providing an est imate of  this bound.  

Image 1 Image 2 Image 3 

Image  type Infra red, marine Visible, Visible, midlati tude 
s t ra tocumulus  s t ra tocumulus  cyclone 

Range  of scales 1.1 × 256 = 281 km 1.1 × 512 = 563 km 2.2 x 512 = 1126 km 
s 2.5 _+ 0.1 2.18 _+ 0.05 2.10 -+ 0.01 
Sphero-scale 3.5 _+ 0.8 km 3.9 _+ 0.6 km not applicable ~ 
c - 0 . 4 3  --- 0.08 - 0 . 3 2  _+ 0.05 - 0 . 1 8  _+ 0.03 
f 0.0 _+ 0.1 -0 .01  - 0.02 0.00 + 0.02 
e - 0 . 4  -+ 0.2 0.17 _+ 0.04 0.04 _+ 0.05 
a 0.2 +- 0.3 0.28 _+ 0.07 0.18 _+ 0.03 
In01 .... 60 --+ 30 ° 30 - 10 ° 10 _+ 10 ° 

°lAs indicated in the text,  no spheroscale is apparent  in this case, using eq. (4), in units of pixels 
in wavenumber  space (fig. 2c), choosing an energy density level arbitrarily, near  the centre of  fig. 
2c, we f o u n d r 0 = 1 0 8 _ + l , a  1 = - 2 0 _ + 1 ,  b l = - 2 3 + _ l ,  a z = 1 7 _ + l  , b 2 = - 6 _ + 1 .  

Fig. 1. (a, b, c) A grey shade rendit ion of images 1, 2, 3, the radiance fields studied in the text, see 
table I for details. 

Fig. 2. (a, b, c) A grey shade rendit ion of the log of the Fourier  space energy density of  images 1, 
2, 3. Superposed are the  isolines as deduced from the Monte  Carlo differential rotation technique 
using the parameters  in table I. 
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"meso-scale gap") in the meso-scale; this may be the primary way that the 
vertical scale height influences the horizontal structure. 

(c) The primary variation in the scaling parameters seems to be c, e, which 
vary much more than a (which is always positive indicating stratification 
dominance).  This suggests that a is a more fundamental parameter. 

(d) The cases with the most rotation of structures with scales are the 
"texture" fields 1, 2. This is not as surprising as it may seem; computer 
simulations of fractal clouds show that the anisotropy is indeed associated with 
texture [13]; whereas the cyclone is already nearly a (self-similar, isotropic) 
scale invariant log-spiral. 

Obviously many more pictures must be analysed before more definite 
conclusions can be reached #5. The statistics of the parameters should be 
examined, higher order moments should be studied, and finally multifractal 
simulations [14] should be performed to confirm that the analyzed generator 
does indeed correspond to the true generator. 
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