Variabilité temporelle multifractale des observations pluviométriques à Nîmes

Philippe Lafoy, François Schmitt, Daniel Schertzer et Shaun Lovejoy

Résumé – L’analyse de la série temporelle biquotidienne de pluie de Nîmes-Courbessac (1949-1992) met en évidence un comportement multifractal des précipitations sur un intervalle de temps compris entre 12 h et 16 jours environ. La technique d’analyse de données du Double Moment-Trace nous permet d’estimer les paramètres $\alpha=0.45 \pm 0.05$ et $C_1=0.60 \pm 0.02$ qui caractérisent le processus dans le cadre des multifractals universels. La distribution de probabilité des précipitations extrêmes présente une chute hyperbolique caractéristique d’une divergence des moments.

The multifractal temporal variability of Nîmes rainfall data

Abstract – The Nîmes-Courbessac (1949-1992) 12 hrs. resolution rainfall database exhibits a multifractal behaviour for periods of time of at least 12 hrs. to about 16 days. Using the Double Trace Moment data analysis technique, we estimated the basic multifractal indices $\alpha=0.45 \pm 0.05$ and $C_1=0.60 \pm 0.02$, which characterize the process in the framework of universal multifractals. The probability distribution of large fluctuations has a hyperbolic fall-off.

Abridged English Version – 1. THE DATABASE. – As many other geophysical fields, rainfall shows a multifractal variability over a large range of time and space scales (Lovejoy, 1985, 1991; Schertzer, 1987; Hubert, 1989; Gupta, 1990 and Lafoy, 1991). This can be seen in the Nîmes-Courbessac (1949-1992) 12 hrs. resolution rainfall database. Its average is 1.1 mm whereas the maximum of 3 October 1988 which corresponds to a catastrophic flood in Nîmes (Desbordes, 1989; Hémant, 1989 and SCEM, 1990) shows a 228 mm maximum rate of rain in 6 hrs., one third of the mean total year accumulation. Figure 1 shows the database averaged over different periods, from 1 day to 2 years. Viewing the process in reverse, from large (bottom) to small (top) scales, the process is reminiscent of a dynamical cascade (Schertzer, 1987 and Lovejoy, 1992, for a revue). It show how this process distributes rainfall from homogeneous large scales to very localized and intermittent rainfall bursts.

2. UNIVERSAL MULTIFRACTAL ANALYSIS OF THE SERIES. – The energy spectrum $E(\omega)$ of the data is shown on figure 2 as a function of frequency ω. For frequencies going from at least once in 12 hrs. (2 day$^{-1}$) to about once in 16 days (0.06 day$^{-1}$), it is scale invariant with power law exponent $\beta \approx 0.37 \pm 0.05$ ($E(\omega) \propto \omega^{-\beta}$). We analysed the database in the multifractal framework for this range of scales.

Geophysical scaling fields can be modelled by a stable and attractive multiplicative cascade process, leading to universal multifractals (Schertzer, 1989; Lovejoy, 1990; Schmitt, 1992 and Tissier, 1993). Multiplicative cascades give rise to scaling statistical moments and probability distribution given by equation (1) (Parisi, 1985) where $\lambda = T/\tau$ (T is the largest scale of the process studied, and τ is a sub-scale), R_λ is the field R at the resolution λ. The exponent $K(\gamma)$ characterizes the scaling of the γth moment of the field, and the codimension function $C(\gamma)$ the fraction of the probability space occupied by the singularities of order γ. For universal processes (i.e. resulting from stable and attractive multiplicative cascades), these functions depend only on two parameters, α and C_1, and are given by equations (2), where $0 \leq \alpha \leq 2$ characterizes the degree of multifractality ($\alpha = 0$ for monofractal and $\alpha = 2$ for lognormal processes), and C_1 is a measure of the mean heterogeneity ($C_1 = 0$ for homogeneous fields).

Note présentée par Jean-Claude Andre.
We evaluate α and C_4 with a specific data analysis technique: Double Trace Moment (DTM) analysis (Lavallée, 1991, 1992 and Schmitt, 1992), generalizing the evaluation of the (simple) trace moments of the field; R_λ^* is transformed into R_λ^* given by equation (3) for $1 < \lambda < \Lambda$ where Λ is the largest scale ratio. Equation (4) gives the relationship between the scaling exponent $K(q, \eta)$ of R_λ^* and $K(q)$. Equations (2) and (4) then give equation (5). It is thus possible to directly estimate α, the slope of $\log R(q, \eta)$ vs. $\log (\eta)$ for q fixed.

We applied this technique to the rainfall time series, separated into 980 scale invariant series each of $\Lambda = T/\tau = 16/0.5 = 32$ observations. In figure 3, we show the scaling of the double trace moment computed for $q = 1.5$ and $\eta = 0.76, 0.83, 0.91, 1, 1.1$ and 1.2. In figure 4, we represent $\log K(q, \eta)$ vs. $\log (\eta)$ for $q = 1.1, 1.2, 1.3, 1.4,$ and 1.5: the curves are parallel, and the slope of the linear part of these curves gives $\alpha \approx 0.45 \pm 0.05$; it is easy then to compute $C_4 \approx 0.60 \pm 0.02$. These values are close to other estimates made for different rain fields, which gave $\alpha \approx 0.5$ and $C_4 \approx 0.6$ for a global network daily accumulation (Tessier, 1993) and $\alpha \approx 0.5$ and $C_4 \approx 0.2$ for a 6 min. resolution dataset from La Réunion Island (Hubert, 1993). These results confirm that the fundamental parameter α for temporal rainfall is a valid characterization of rain from diverse regions.

Figure 5 shows a comparison between the estimated moments and the computed moments (from the values of $\alpha \approx 0.45$ and $C_4 \approx 0.60$): there is a good agreement until the value $q_{max} \approx 2.8 \pm 0.4$. For larger moments, an empirical linear behaviour is observed, which can be explained by multifractal phase transitions (Schertzer, 1992, 1993 b), corresponding to divergence of moments (Schertzer, 1989), either to sampling limitation (Lavallée, 1991). Figure 6 shows a comparison between empirical and computed (from the values of $\alpha \approx 0.45$ and $C_4 \approx 0.60$) function $c(\gamma)$: there is a good agreement until the value $\gamma_D \approx 0.8 \pm 0.1$. For larger singularities, an empirical linear behaviour is observed (we have a hyperbolic tail for the probability distribution), which corresponds to divergence of moments (Schertzer, 1992) order $q_D = 3.0 \pm 0.2$, the slope of the straight line.

3. CONCLUSION. — The estimates $\alpha \approx 0.45 \pm 0.05$ and $C_4 \approx 0.60 \pm 0.02$ obtained with the DTM technique characterize the scaling intermittency of rainfall in Nîmes-Coumbessa for time scales ranging from 12 hrs. to 16 days. A comparison with other estimates of the parameters α and C_4 shows that the value $\alpha \approx 0.5 \pm 0.1$ is the same for all temporal rainfall series studied until now. The analysis of probability distribution of rainfall accumulation shows a hyperbolic fall-off, which corresponds to divergence of moments order $q_D = 3.0 \pm 0.2$: the empirical moments order $q \geq q_D$ will depend on the number of samples studied, and diverge with it. This shows that large singularities have a much larger probability of apparition than if there were no divergence of moments.

La série des précipitations biquotidiennes de Nîmes-Courbessac, de 1949 à 1992 présente environ 32 000 mesures. Six totaux quotidiens sont supérieurs à 100 mm, notamment le 3 octobre 1988, avec 228 mm en 6 h (1) (Desbordes, 1989 ; Hémain, 1989 et SCEM, 1990), et le 12 octobre 1990, avec 250 mm en 4 h ! Ces singularités (intensités extrêmes de pluie) qui atteignent le tiers de la normale annuelle (747 mm sur la période 1951-1980) sont à comparer à la moyenne de la série soit 1,1 mm par 12 h. La figure 1 illustre cette hétérogénéité et la forte contribution des grandes singularités dans la distribution temporelle de la pluie. Les différents graphiques de cette figure, représentent – du haut vers le bas – les cumuls moyennés sur des durées de plus en plus longues (1, 10, 30, 91, 182, 365 et 730 jours). Ils montrent qu’un comportement singulier, extrême, observé à l’échelle de 24 h se répercute nettement jusqu’à l’échelle du semestre.

De plus, en parcourant la figure 1 du bas vers le haut, les graphiques représentent les étapes successives d’un processus en cascade qui illustrent comment se construisent des fluctuations temporelles à des échelles de plus en plus fines. Les propriétés invariantes d’échelle de ce processus intermittent permettent de le décrire en terme de multifractals universels et de déterminer les statistiques des valeurs extrêmes.

2. Analyse des données dans le cadre des multifractals universels. – Le spectre d’énergie total des données est représenté sur la figure 2. On observe une invariance d’échelle pour le spectre, allant des fréquences les plus hautes (au moins la fréquence d’observation) à environ une fois tous les 16 jours (≈ 0,06 jour⁻¹). A ces échelles, le spectre d’énergie s’écrit E(ω) ∝ ω⁻β avec β ≈ 0,37 ± 0,05, ω étant la fréquence. Cette échelle de 16 jours est proche du « maximum synoptique » (Kolesnikova, 1965), correspondant à l’échelle temporelle associée aux structures de taille planétaire.

Les processus résultant de cascades multiplicatives ont un comportement d’invariance d’échelle multiple aussi bien pour les moments d’ordre q (q désignant la moyenne d’ensemble) que pour la distribution de probabilité (Parisi, 1985):

\[(R_\lambda)^q \approx \lambda K(q) \quad \Leftrightarrow \quad \text{Pr} (R_\lambda \geq \lambda) \approx \lambda^{-c(\gamma)} \]

où λ est le rapport d’échelle entre l’échelle la plus vaste du phénomène étudié et une sous-échelle (pour des séries temporelles de longueur T et de pas de mesure τ, λ = Λ = T/τ). R_\lambda est l’intensité du champ analysé R au rapport d’échelle λ. L’exposant K(q) est la fonction caractéristique du champ (\gamma) et c(\gamma) sa fonction codimension, caractérisant la fraction d’espace de probabilité occupé par les singularités d’ordre γ. Pour les processus universels [c’est-à-dire la limite stable et attractive obtenue après un mélange non linéaire de plusieurs processus de même type (Schertzer, 1989)], ces deux fonctions ne dépendent que de deux paramètres α et C₁ :

\[K(q) = \begin{cases} \frac{C_1}{\alpha - 1} (q^\alpha - q), & \alpha \neq 1 \\ C_1 \text{Log } q, & \alpha = 1 \end{cases} \quad c(\gamma) = \begin{cases} C_1 \left(\frac{\gamma}{C_1 \alpha'} + 1\right)^{\alpha'} - 1, & \alpha \neq 1 \\ C_1 \exp \left(\frac{\gamma}{C_1} - 1\right), & \alpha = 1 \end{cases} \]

avec \((1/\alpha) + (1/\alpha') = 1\). Le paramètre α est une mesure de l’extension de la hiérarchie de singularités ; il caractérise le degré de multifractalité (\gamma) avec \(0 \leq \alpha \leq 2\) (\alpha = 0 pour un
processus monofractal et \(\alpha = 2 \) pour un processus improprement appelé « lognormal »), et \(C_\alpha \) mesure les hétérogénéités moyennes du champ (\(C_\alpha = 0 \) pour un champ homogène).

Fig. 2. – Le spectre d'énergie $E(\omega)$ (ω est la fréquence) de la série temporelle étudiée.
On observe un comportement en loi de puissance $E(\omega) \propto \omega^{-\beta}$ avec $\beta = 0.37 \pm 0.05$, sur une gamme de fréquences allant des plus hautes (fréquence des observations) à environ 0.06 jour$^{-1}$ (16 jours). Sur cette gamme d'échelles, le champ de précipitations peut être considéré comme un champ multifractal.

Fig. 3. – Illustration de l'invariance d'échelle du Double Moment-Trace de la série temporelle, pour $q = 1.5$ et $\eta = 0.76$, 0.83, 0.91, 1, 1.1 et 1.2, de bas en haut : $\log \left(\langle |R_\lambda|^{q} \rangle \right)$ est linéaire en fonction de $\log \left(\Lambda \right)$.

Fig. 4. – Scaling of the Double Trace Moment of the temporal database, for $q = 1.5$ and $\eta = 0.76$, 0.83, 0.91, 1, 1.1 and 1.2 from bottom to top: $\log \left(\langle |R_\lambda|^{q} \rangle \right)$ versus $\log \left(\Lambda \right)$ is linear.

en champ R'_λ :

\begin{equation}
R'_\lambda = \left(\frac{\langle |R_\lambda|^{q} \rangle}{\langle |R_\lambda|^{q} \rangle} \right) \langle |R_\lambda|^{q} \rangle
\end{equation}

pour $1 < \lambda \leq \Lambda$, Λ étant le plus grand rapport d'échelle disponible. La fonction caractéristique $K(q, \eta)$ du champ R'_λ s'écrit alors ($\langle |R_\lambda|^{q} \rangle$ étant une constante) :

\begin{equation}
K(q, \eta) = K(q \eta) - q K(\eta)
\end{equation}

En utilisant l'équation (2), cette fonction devient (Scherzer, 1993 a):

\begin{equation}
K(q, \eta) = \eta^{\alpha} K(q)
\end{equation}

En représentation log-log, $K(q, \eta)$ pour q fixé a pour pente α et C_1 peut se déduire de l'intersection avec la droite $\eta = 1$.

Nous appliquons cette technique au champ de pluie, scindé en 980 échantillons du champ invariant d'échelle composé de $\Lambda = T/\tau = 16/0.5 = 32$ observations. La figure 3 montre l'invariance d'échelle du Double Moment-Trace, pour $q = 1.5$ et $\eta = 0.76$, 0.83, 0.91, 1, 1.1 et 1.2. La figure 4 montre différentes courbes $\log K(q, \eta)$ en fonction de $\log (\eta)$; les courbes sont parallèles pour une plage de valeurs de η assez étendue, ce qui nous donne les estimations $\alpha \approx 0.45 \pm 0.05$ et $C_1 \approx 0.60 \pm 0.02$. Ces valeurs sont proches de
celles estimées par plusieurs équipes pour différentes séries temporelles de pluie : \(\alpha \approx 0,5 \) et \(C_1 \approx 0,6 \) pour des données d’accumulation journalière sur un réseau global (Tessier, 1993), et \(\alpha \approx 0,5 \) et \(C_1 \approx 0,2 \) pour des données de 6 mn de résolution enregistrées à l’île de La Réunion (Hubert, 1993). Ces résultats vont dans le sens d’une « universalité » de la valeur de \(\alpha \) pour les séries temporelles de précipitations.

La figure 5 montre la bonne concordance existant entre les moments (simples) expérimentaux et \(K(q) \) donnée par l’équation (2) avec les valeurs estimées plus haut. Elle indique que jusqu’à un moment d’ordre environ \(q_{\text{max}} \approx 2,8 \pm 0,4 \), les deux courbes sont très proches. Ensuite, pour \(q > q_{\text{max}} \), la fonction caractéristique \(K(q) \) expérimentale suit un comportement linéaire en \(q \). Un tel comportement indique une transition de phase multifractale (Schertzer, 1993 b) : du second ordre, il s’agit d’une limitation provenant de la taille finie de l’échantillonnage (Lavallée, 1991) ; du premier ordre, elle correspond à un ordre de divergence des moments (Schertzer, 1992). La figure 6 compare l’estimation expérimentale de la fonction \(c(\gamma) \) à celle donnée par l’équation (2) avec les valeurs des paramètres estimées plus haut. Pour \(\gamma \leq \gamma_D = 0,8 \pm 0,1 \), les deux courbes sont en bonne concordance, alors que pour \(\gamma > \gamma_D \) la courbe \(c(\gamma) \) expérimentale est linéaire en \(\gamma \), ce qui traduit une chute hyperbolique de la distribution de probabilité, correspondant à une divergence de moments (Schertzer, 1993 c), autrement dit à une transition de phase multifractale de premier ordre. L’ordre de divergence des moments est donné par la pente de la droite en question, et précise l’estimation faite plus haut : \(q_D = 3,0 \pm 0,2 \) (3).

3. CONCLUSION. - La détermination des valeurs de \(\alpha \approx 0,45 \pm 0,05 \) et \(C_1 \approx 0,60 \pm 0,02 \) par la technique du DTM permet de caractériser le comportement multifractal (intermittent et invariant d’échelle) de la série temporelle des précipitations à Nîmes-Courbessac sur un intervalle compris entre une demi-journée et 16 jours. Les résultats, obtenus à partir d’une série climatologique de qualité, confirment et améliorent plusieurs estimations des paramètres \(\alpha \) et \(C_1 \) réalisées à partir de données différentes (réseau global, données de la Réunion...).
Variabilité multifractal des précipitations

Fig. 5. – Une représentation de la fonction caractéristique $K(q)$ en fonction de q pour les données expérimentales (carrés), et pour l’estimation correspondant $\alpha = 0.45$ et $C_1 = 0.6$ (ligne épaisse continue). On constate que jusqu’à la valeur $q_{max} = 2.8 \pm 0.4$, les deux courbes sont en bon accord. Ensuite $K(q)$ expérimental est linéaire. Ce comportement linéaire peut s’expliquer soit par la divergence des moments, soit par une limitation due au nombre fini de données étudiées.

Fig. 5. – $K(q)$ vs q for empirical data (squares) compared with the estimates corresponding to $\alpha = 0.45$ and $C_1 = 0.6$ (thick solid line). Up to the value $q_{max} = 2.8 \pm 0.4$, the curves are close to each other. For $q > q_{max}$, the empirical curve is linear. This could be explained either by divergence of high order moments, or by sampling limitations.

Fig. 6. – Une comparaison entre la fonction codimension $c(\gamma)$ expérimentale (carrés) et celle donnée par l’équation (2) pour les paramètres $\alpha = 0.45$ et $C_1 = 0.6$ (ligne continue). On constate que pour $\gamma \leq \gamma_0 = 0.8 \pm 0.1$, les deux courbes sont en bonne concordance, alors que $\gamma > \gamma_0$ la courbe $c(\gamma)$ expérimentale est linéaire en γ, ce qui traduit une chute hyperbolique de la distribution de probabilité. Cela confirme la divergence des moments, d’ordre donné par la pente de la droite en question : $q_0 = 3.0 \pm 0.2$.

Fig. 6. – $c(\gamma)$ vs γ for empirical data (squares) compared with the estimates corresponding to $\alpha = 0.45$ and $C_1 = 0.6$ (thick solid line). Up to the value $\gamma_0 = 0.8 \pm 0.1$, the curves are close to each other. But for $\gamma > \gamma_0$, the empirical curve is linear, showing a hyperbolic fall-off of the probability distribution law. This confirms divergence of moments, order $q_0 = 3.0 \pm 0.2$.

L’analyse de la distribution de probabilité des intensités de pluie révèle une chute hyperbolique pour les intensités extrêmes, qui se traduit par une divergence des moments d’ordre $q_0 = 3.0 \pm 0.2$: l’estimation expérimentale des moments d’ordre $q \geq q_0$ dépend du nombre d’échantillons étudiés, et diverge avec celui-ci. Une telle loi caractérise un champ très violent: les grandes singularités ont une probabilité d’apparition beaucoup plus forte que s’il n’y avait pas de divergence des moments.

Nous remercions J.-P. Carbonnel, C. Hooge, P. Hubert, D. Lavallée, A. Toma et Y. Tessier pour des discussions stimulantes, M. Montarrère, B. Ketchian, B. Le Cavaillé, S. Sicard et Ph. Veyre, pour leurs remarques et les facilités accordées.

(1) Donn 160 mm en 3 h. Le même jour, le poste pluviométrique voisin, Nîmes-Mas-de-Ponge, a subi une intensité de 220 mm en 3 h 30 min pour un total de 400 mm en 8 h. Lors de l’événement pluvieux très meurtrier ayant ravagé Vaison-la-Romaine le 22 septembre 1992, on peut noter les intensités extrêmes relevées à la station voisine de Carpentras: 77.6 mm en 30 min, dont 19.4 mm en 6 mm (Benech, 1993).

(2) $K(q) \log \lambda$ est la seconde fonction caractéristique (au sens de Laplace) de Log λ, le générateur de R_λ.

(3) Ce paramètre est également l’indice de Lévy du générateur de R_λ.

(4) Précisons qu’il est possible de relier l’approche multifractale à la notion de durée de retour des événements extrêmes (Desbordes, 1989 et Hémain, 1989): en interprétant la relation (1) comme une relation de proportionnalité rigoureuse, un calcul simple permet d’estimer la période de retour de la catastrophe du 3 octobre 1988 à Nîmes (pluie journalière supérieure à 200 mm) comme variant entre 30 et 150 ans. Cette durée est comparable aux résultats purement descriptifs exposés par les études citées.