The Algebraic Approach

Refs: Fewster (1), Wald (2), Hollands+Wald (1), Haag Ch. III. Benini et al.

Where are we?

"Basics" of QFT in CST
- classical field thy
- canonical quantization
- algebraic approach
- UV structure
- "common knowledge" about particles and states

We are a bit behind, so need to reschedule student talks.

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algebraic/UV structure</td>
<td>28</td>
<td>30</td>
</tr>
<tr>
<td>Rindler space, Unruh effect</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Leesa, Hossein</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>Euclidean, Schwinger-Keldysh</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>BHs</td>
<td>25</td>
<td>27</td>
</tr>
<tr>
<td>BHs/presentations</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

particles, states, KMS
Adam/entanglement
Composite ops./Elisa
BHs
Extra or cancelled
Jerome, Guilherme
Outline:

I. Algebraic approach to QFT in CST
 - motivation
 - the algebra
 - states
 - GNS construction
 - upshot

II. UV structure
 - motivation
 - short-dist. behavior in Minkowski
 - Hadamard condition
 - Ex: α-vacua in dS
I. The Algebraic approach

Motivation

* Have already seen: choice of +/- "frequency" => no unique H.

* Fock "vacuum" not meaningful; not unique, and Σ can be excited state in another H!

* Could also consider (even) quantization on different overlapping charts. How to relate H's?

* Clear there should be some more general structure w/in which all states treated democratically.

* Key observation: algebraic structure satisfied by Ω. $\phi[f]$ the same in all constructions of H's.
The algebra of observables

Recall that from Hamiltonian analysis we obtained set of rules: for \(f \in C^0(M) \)

i.) \(\phi[f] \) is \(C \)-linear (i.e. allow \(f \in C^0(M) \) complex)

ii.) \(\phi[f]^* = \phi[f^*] \)

iii.) \(\phi[0] = 0 \)

iv.) \([\phi[f_1], \phi[f_2]] = i \mathcal{E}[f_1, f_2] \)

Think of \(\phi[f] \) as symbols for now. Consider finite sum of finite products—of \(\phi[f_i] \). With an appropriate closure (i.e., specification of what \(\in \) sum+products are admissible) these symbols form an abstract algebra. Since we provide a notion of \(\ast \) in (i.), include \(1 \), it is a "limital \(\Lambda^* \) algebra."

Consider the \(f \in C^0(M)/PC^0(M) \) with \(\text{supp} f \in 0 \). These \(f \) generate a local algebra of observables

\[
\mathcal{A}(0) := \{ \text{free alg}(\phi[f], 1) \mid f \in C^0(0) \}
\]
We will not address choices of closure - but you will have related HW problem.

Local algebras form a "net" which is inductive, i.e. for \(O' \subset O \) then \(A(O') \subset A(O) \). For \(M \), have \(A(M) \) which is union of \(A(O) \ \forall \) open sets \(O \leq M \).

\[
A(M) = \bigcup_{O \leq M} A(O)
\]

Think of \(A(M) \) as list of questions/observed, one may ask in thy. Algebra non-trivial b/c observations can change state, so order matters!

Refer to \(A(O) \), \(A(M) \) as abstract algebras b/c no mention of \(H \) or \(g \), i.e. no representation of \(A(O) \) indicated.

Note: when \(O_1 \cap T^\pm(O_2) \) then all elements of \(A(O_1) \) commute w/ those of \(A(O_2) \).
States

A state is a normalizable, positive, linear functional on algebra $A(M)$.

$$\Psi : A(M) \rightarrow \mathbb{C},$$

$$\langle A^* A \rangle_\Psi \geq 0 \quad \forall A \in A(M),$$

"positivity" constraints

$$\langle \Phi \rangle_\Psi < 1$$

not abbreviated bra-ket notation; this is definition of Ψ

In essence, states Ψ just collection of correlation facts.

$$\langle \phi(x) \psi, \langle \phi(x', \phi(x') \rangle_\Psi, A \text{ state provides an answer to every question in } A(M).$$

GNS construction

How is this picture related to Hilbert space description like that of canonical quant? It turns out that, given any algebraic state Ψ, can construct a H_Ψ on which Ψ is a very "nice" (approximate) state vector.

In essence, we are going to "reverse" process of canonical quant. \rightarrow state first, then H.
Theorem: Let $A(M)$ be a unital $*$-algebra and \(\Psi: A(M) \rightarrow \mathbb{C} \) a state. Then \exists a Hilbert space \mathcal{H}_Ψ, representation $\pi: A \rightarrow \mathcal{L}(\mathcal{H}_\Psi)$, and a vector $\ket{\Psi} \in \mathcal{H}_\Psi$, such that $\ket{\Psi}$ is cyclic, i.e. $\{\pi(A)\ket{\Psi}\}$ is dense in \mathcal{H}_Ψ. GNS triple $\{\mathcal{H}_\Psi, \pi, \ket{\Psi}\}$ is unique up to unitary equivalence.

For proofs see Wald [2], or Benini et al. This is the **GNS construction** of a Hilbert space compatible w/ algebraic state Ψ.

Note that canonical quantization is an example of GNS construction.

Upshot

- Algebraic approach provides democratic framework for describing all things one might call “states”
- Is a necessary generalization of setting for quantum physics
o **Strengths:**
 - clearly states what questions are
 - omits needless structure
 - manifestly covariant — indeed, no choice of gms!
 - well-adapted to describe sub-regions, subsets of obs.

o **Weaknesses:**
 - formal
 - omits too broad a notion of state!
 - indeed, many pos. lin. functionals on $A(U)$ too singular/strange to be regarded as physical

N.B.:

o what about composite operators? $\phi^2(x)$? $T(n)(x)$?
 Need in order to couple to gravity...

o completion of $*$-algebra not unique. This deeply related to fact that $\phi(x)$ unbounded
 operator. If we switch to "observable" $e^{i\phi(x)}$
 which is bounded can obtain unique C^*-
 algebra known as Weyl algebra. See HW.