The standard model of cosmology: ΛCDM

Pat Scott

Department of Physics, McGill University

Slides available from

www.physics.mcgill.ca/~patscott
Cosmological Models

2 CDM – Background
- Evidence and models
- Dark matter detection

3 CDM – Selected results
- Indirect detection
- Multimessenger particle physics: global fits
- Effects of dark matter on stars
Outline

1. Cosmological Models
2. CDM – Background
 - Evidence and models
 - Dark matter detection
3. CDM – Selected results
 - Indirect detection
 - Multimessenger particle physics: global fits
 - Effects of dark matter on stars
The Friedmann Equation

Take the Einstein Equation from General Relativity:

\[G_{\mu\nu} = 8\pi T_{\mu\nu} + \Lambda g_{\mu\nu}. \] \hspace{1cm} (1)
The Friedmann Equation

Take the Einstein Equation from General Relativity:

\[G_{\mu\nu} = 8\pi T_{\mu\nu} + \Lambda g_{\mu\nu}. \] (1)

Assume the Universe to be isotropic and homogeneous
\[\implies \text{Friedmann-Robertson Walker (FRW) metric:} \]

\[g_{\mu\nu} x^\mu x^\nu = dt^2 + R(t)^2 \left(\frac{dr^2}{1 - kr^2} + r^2 d\Omega^2 \right). \] (2)
The Friedmann Equation

Take the Einstein Equation from General Relativity:

\[G_{\mu\nu} = 8\pi T_{\mu\nu} + \Lambda g_{\mu\nu}. \]
(1)

Assume the Universe to be isotropic and homogeneous \(\Rightarrow \) Friedmann-Robertson Walker (FRW) metric:

\[g_{\mu\nu}x^\mu x^\nu = dt^2 + R(t)^2 \left(\frac{dr^2}{1 - kr^2} + r^2 d\Omega^2 \right). \]
(2)

Solve \(\mu = 0, \nu = 0 \) of (1) \(\Rightarrow \) Friedmann Equation:

\[H(t) \equiv \frac{\dot{R}(t)}{R(t)} = \frac{8\pi G}{3} \rho(t) - \frac{k}{R(t)^2}. \]
(3)
The Friedmann Equation

Solve $\mu = 0, \nu = 0$ of (1) \implies *Friedmann Equation*:

$$H(t) \equiv \frac{\dot{R}(t)}{R(t)} = \frac{8\pi G}{3} \rho(t) - \frac{k}{R(t)^2}. \quad (4)$$
The Friedmann Equation

Solve $\mu = 0, \nu = 0$ of (1) \implies *Friedmann Equation*:

$$H(t) \equiv \frac{\dot{R}(t)}{R(t)} = \frac{8\pi G}{3} \rho(t) - \frac{k}{R(t)^2}.$$ (4)

Solving this gives Hubble parameter $H(t)$ for some
- energy density-scalefactor relation $R(t) = f(\rho(t))$
- curvature $k \in \{+1, 0, -1\}$
Solve $\mu = 0, \nu = 0$ of (1) \implies **Friedmann Equation:**

$$H(t) \equiv \frac{\dot{R}(t)}{R(t)} = \frac{8\pi G}{3} \rho(t) - \frac{k}{R(t)^2}. \quad (4)$$

Solving this gives Hubble parameter $H(t)$ for some

- energy density-scalefactor relation $R(t) = f(\rho(t))$
- curvature $k \in \{+1, 0, -1\}$

$H(t)$ encodes the dynamic evolution of the Universe
Solve $\mu = 0, \nu = 0$ of (1) \implies *Friedmann Equation:*

$$H(t) \equiv \frac{\dot{R}(t)}{R(t)} = \frac{8\pi G}{3} \rho(t) - \frac{k}{R(t)^2}. \quad (4)$$

Solving this gives Hubble parameter $H(t)$ for some
- energy density-scalefactor relation $R(t) = f(\rho(t))$
- curvature $k \in \{+1, 0, -1\}$

$H(t)$ encodes the dynamic evolution of the Universe

Critical density:
For a flat Universe $k = 0$. This defines

- *critical density:* $\rho_c \equiv \frac{3H(t)}{8\pi G}$
- *cosmological density:* $\Omega_x \equiv \frac{\rho_x}{\rho_c}$
Equations of state:

1st law of thermodynamics ($\mu = 0$ in conservation of $T_{\mu \nu}$) is

$$d(\rho R^3) = -p d(R^3), \quad \text{i.e. } \Delta E = -p \Delta V$$

with a constant equation of state $\rho = wp$, we get energy density-scalefactor relations

$$\rho \propto R^{-3(1+w)}$$

For different types of energy:

- **Matter:** $w = 0 \quad \implies \quad \rho \propto R^{-3}$
- **Radiation:** $w = 1/3 \quad \implies \quad \rho \propto R^{-4}$
- **Vacuum (Λ):** $w = -1 \quad \implies \quad \rho \propto \text{constant}$

This is basically enough to solve the Friedmann Equation.
Ingredients of ΛCDM

Ingredients required for a cosmological model

- **A theory of gravity**
- **+ associated assumptions**
- **Types of energy**
- **their equations of state**
- **their (self-)interactions**
- **An initial spectrum of perturbations**

Choices in ΛCDM

- **GR**
- **+ isotropy, homogeneity**
- **radiation, matter, vacuum/dark energy**
- **$w = 1/3, 0, −1$/other**
- **photons, baryonic (SM) matter**
- **+ cold dark matter (CDM), ??**
- **approximately scale invariant on large scales**
Ingredients of ΛCDM

Ingredients required for a cosmological model

- A theory of gravity + associated assumptions
- Types of energy + their equations of state + their (self-)interactions
- An initial spectrum of perturbations

Choices in ΛCDM

- GR + isotropy, homogeneity
- Radiation, matter, vacuum/dark energy
- $w = 1/3, 0, -1$/other
- Photons, baryonic (SM) matter + cold dark matter (CDM), ??
- Approximately scale invariant on large scales
Question

Isn’t inflation part of the ΛCDM model?

Answer

Not really, no. Approximately scale-invariant spectrum of perturbations to start with, on CMB scales (small k)? Yes. Due to inflation by definition? No. $P_δ(k) \propto P_R(k) \propto k^{n_s-1} + \alpha \log \frac{k}{k_0}$ (7)

ΛCDM does not demand inflation, just as it does not demand any particular CDM— inflation is just an idea for getting the required spectrum on CMB scales— any particular DM model is just an idea for getting CDM...
An aside: inflation

Question
Isn’t inflation part of the ΛCDM model?

Answer
Not really, no.
An aside: inflation

Question
Isn’t inflation part of the ΛCDM model?

Answer
Not really, no.

Approximately scale-invariant spectrum of perturbations to start with, on CMB scales (small k)? Yes.
Due to inflation by definition? No.

$$\mathcal{P}_\delta(k) \propto \mathcal{P}_R(k) \propto k^{n_s - 1}$$

(7)
An aside: inflation

Question
Isn’t inflation part of the ΛCDM model?

Answer
Not really, no.

Approximately scale-invariant spectrum of perturbations to start with, on CMB scales (small k)? Yes.
Due to inflation by definition? No.

$$P_\delta(k) \propto P_R(k) \propto k^{n_s-1+\alpha \log k/k_0}$$ (7)
An aside: inflation

Question
Isn’t inflation part of the ΛCDM model?

Answer
Not really, no.

Approximately scale-invariant spectrum of perturbations to start with, on CMB scales (small k)? Yes. Due to inflation by definition? No.

$$\mathcal{P}_\delta(k) \propto \mathcal{P}_R(k) \propto k^{n_s-1+\alpha \log k/k_0}$$ \hspace{1cm} (7)

ΛCDM does not demand inflation, just as it does not demand any particular CDM
— inflation is just an idea for getting the required spectrum on CMB scales
— any particular DM model is just an idea for getting CDM.
Cosmological probes & ‘concordance cosmology’

Joint fit to multiple cosmological observables gives a consistent set of parameter values:

\[\Omega_\Lambda \approx 0.73 \]
\[\Omega_{\text{matter}} \approx 0.27 \]
\[\Omega_{\text{CDM}} \approx 0.23 + \Omega_{\text{baryons}} \approx 0.04 \]
\[\rightarrow \Lambda CDM \]
Joint fit to multiple cosmological observables gives a consistent set of parameter values:

\[\Omega_{\Lambda} \approx 0.73 \]
\[\Omega_{\text{matter}} \approx 0.27 \]
\[\Omega_{\text{CDM}} \approx 0.23 + \Omega_{\text{baryons}} \approx 0.04 \]
\[\rightarrow \Lambda\text{CDM} \]

(I follow a similar global fit strategy to hunt for DM and particle theories beyond the SM)
Outline

1. Cosmological Models
2. CDM – Background
 - Evidence and models
 - Dark matter detection
3. CDM – Selected results
 - Indirect detection
 - Multimessenger particle physics: global fits
 - Effects of dark matter on stars
How we know dark matter exists

The only way to consistently explain:

1. rotation curves + vel. dispersions
2. gravitational lensing
3. cosmological data

- Large-scale structure (2dF/Chandra/SDSS-BAO) says $\Omega_{\text{matter}} \approx 0.27$
- BBN says that $\Omega_{\text{baryonic}} \approx 0.04$
- $\Rightarrow \Omega_{\text{non–baryonic}} \approx 5 \times \Omega_{\text{baryons}}$
- CMB (WMAP) and SN1a agree; also indicate that $\Omega_{\text{total}} \approx 1$
- \Rightarrow universe is 23% dark matter, 4% baryonic (visible) matter, 73% something else
What we know about it

Must be:
- massive (gravitationally-interacting)
- unable to interact via the electromagnetic force (dark)
- non-baryonic
- “cold(ish)” (in order to allow structure formation)
- stable on cosmological timescales
- produced with the right relic abundance in the early Universe.

Good options:
- Weakly Interacting Massive Particles (WIMPs)
- sterile neutrinos
- gravitinos
- axions
- hidden sector dark matter (e.g. WIMPless dark matter)
What we know about it

Must be:

- massive (gravitationally-interacting)
- unable to interact via the electromagnetic force (dark)
- non-baryonic
- “cold(ish)” (in order to allow structure formation)
- stable on cosmological timescales
- produced with the right relic abundance in the early Universe.

Good options:

- Weakly Interacting Massive Particles (WIMPs)
- sterile neutrinos
- gravitinos
- axions
- axinos
- hidden sector dark matter (e.g. WIMPless dark matter)

Bad options:

- primordial black holes
- MAssive Compact Halo Objects (MACHOs)
- standard model neutrinos
What we know about it

Must be:
- massive (gravitationally-interacting)
- unable to interact via the electromagnetic force (dark)
- non-baryonic
- “cold(ish)” (in order to allow structure formation)
- stable on cosmological timescales
- produced with the right relic abundance in the early Universe.

Good options:
- Weakly Interacting Massive Particles (WIMPs)
- sterile neutrinos
- gravitinos
- axions
- axinos
- hidden sector dark matter (e.g. WIMPless dark matter)

Bad options:
- primordial black holes
- MAssive Compact Halo Objects (MACHOs)
- standard model neutrinos

The standard model of cosmology: ΛCDM
WIMPs at a glance

- Dark because no electromagnetic interactions
- Cold because very massive (~ 10 GeV to ~ 10 TeV)
- Non-baryonic and stable - no problems with BBN or CMB
- Weak-scale annihilation cross-sections *naturally* lead to a relic abundance of the right order of magnitude

(Kolb & Turner 1990)
WIMPs at a glance

- Many theoretically well-motivated particle candidates
 - Supersymmetric (SUSY) neutralinos χ if R-parity is conserved - lightest mixture of neutral higgsinos and gauginos
 - Inert Higgses - extra Higgs in the Standard Model
 - Kaluza-Klein particles - extra dimensions
 - Right-handed neutrinos, sneutrinos, other exotic things...

- Weak interaction means scattering with nuclei \rightarrow detection channel
- Many WIMPs are Majorana particles (own antiparticles) \implies self-annihilation cross-section
Outline

1. Cosmological Models
2. CDM – Background
 - Evidence and models
 - Dark matter detection
3. CDM – Selected results
 - Indirect detection
 - Multimessenger particle physics: global fits
 - Effects of dark matter on stars

Pat Scott – Oct 5 – University of Oslo

The standard model of cosmology: ΛCDM
Ways to detect WIMPs

- Direct detection – nuclear collisions and recoils – CDMS, XENON, DAMA, CRESST, CoGeNT
Ways to detect WIMPs

- Direct detection – nuclear collisions and recoils – CDMS, XENON, DAMA, CRESST, CoGeNT

Your favourite photodetector

something very reflective
Ways to detect WIMPs

- Direct detection – nuclear collisions and recoils – CDMS, XENON, DAMA, CRESST, CoGeNT

![Diagram showing direct detection of WIMPs]
Ways to detect WIMPs

- Direct detection – nuclear collisions and recoils – CDMS, XENON, DAMA, CRESST, CoGeNT

The standard model of cosmology: ΛCDM
Ways to detect WIMPs

- Direct detection – nuclear collisions and recoils – CDMS, XENON, DAMA, CRESST, CoGeNT
- Direct production – missing E_T or otherwise – LHC, Tevatron
Ways to detect WIMPs

- Direct detection – nuclear collisions and recoils – CDMS, XENON, DAMA, CRESST, CoGeNT
- Direct production – missing E_T or otherwise – LHC, Tevatron
Ways to detect WIMPs

- Direct detection – nuclear collisions and recoils – CDMS, XENON, DAMA, CRESST, CoGeNT
- Direct production – missing E_T or otherwise – LHC, Tevatron
- Indirect detection – annihilations producing
 - gamma-rays – Fermi, HESS, CTA
 - anti-protons – PAMELA, AMS
 - anti-deuterons – GAPS
 - neutrinos – IceCube, ANTARES
 - $e^+ e^−$ – PAMELA, Fermi, ATIC, AMS
 → secondary radiation: Compton$^{-1}$, synchrotron, bremsstrahlung
 - secondary impacts on the CMB
Ways to detect WIMPs

- Direct detection – nuclear collisions and recoils – CDMS, XENON, DAMA, CRESST, CoGeNT
- Direct production – missing E_T or otherwise – LHC, Tevatron
- Indirect detection – annihilations producing
 - gamma-rays – Fermi, HESS, CTA
 - anti-protons – PAMELA, AMS
 - anti-deuterons – GAPS
 - neutrinos – IceCube, ANTARES
 - e^+e^- – PAMELA, Fermi, ATIC, AMS
 → secondary radiation: Compton$^{-1}$, synchrotron, bremsstrahlung
 - secondary impacts on the CMB
- Dark stars – JWST, VLT
Ways to detect WIMPs

- Direct detection – nuclear collisions and recoils – CDMS, XENON, DAMA, CRESST, CoGeNT
- Direct production – missing E_T or otherwise – LHC, Tevatron
- Indirect detection – annihilations producing
 - gamma-rays – *Fermi*, HESS, CTA
 - anti-protons – PAMELA, AMS
 - anti-deuterons – GAPS
 - neutrinos – IceCube, ANTARES
 - e^+e^- – PAMELA, *Fermi*, ATIC, AMS
 - secondary radiation: Compton$^{-1}$, synchrotron, bremsstrahlung
 - secondary impacts on the CMB
- Dark stars – JWST, VLT
Ways to detect WIMPs

- Direct detection – nuclear collisions and recoils – CDMS, XENON, DAMA, CRESST, CoGeNT
- Direct production – missing E_T or otherwise – LHC, Tevatron
- Indirect detection – annihilations producing
 - gamma-rays – *Fermi*, HESS, CTA
 - anti-protons – PAMELA, AMS
 - anti-deuterons – GAPS
 - neutrinos – IceCube, ANTARES
 - $e^+e^−$ – PAMELA, *Fermi*, ATIC, AMS
 → secondary radiation: Compton$^{-1}$, synchrotron, bremsstrahlung
 - secondary impacts on the CMB
- Dark stars – JWST, VLT
Outline

1. Cosmological Models
2. CDM – Background
 - Evidence and models
 - Dark matter detection
3. CDM – Selected results
 - Indirect detection
 - Multimessenger particle physics: global fits
 - Effects of dark matter on stars
Finding dark matter with neutrino telescopes

The cartoon version:

1. Halo WIMPs crash into the Sun
2. Some lose enough energy in the scatter to be gravitationally bound
3. Scatter some more, sink to the core
4. Annihilate with each other, producing neutrinos
5. Propagate+oscillate their way to the Earth, convert into muons in ice/water
6. Look for Čerenkov radiation from the muons in IceCube, ANTARES, etc
The cartoon version:

1. Halo WIMPs crash into the Sun
2. Some lose enough energy in the scatter to be gravitationally bound
3. Scatter some more, sink to the core
4. Annihilate with each other, producing neutrinos
5. Propagate+oscillate their way to the Earth, convert into muons in ice/water
6. Look for Čerenkov radiation from the muons in IceCube, ANTARES, etc
Finding dark matter with neutrino telescopes

The cartoon version:

1. Halo WIMPs crash into the Sun
2. Some lose enough energy in the scatter to be gravitationally bound
Finding dark matter with neutrino telescopes

The cartoon version:

1. Halo WIMPs crash into the Sun
2. Some lose enough energy in the scatter to be gravitationally bound
3. Scatter some more, sink to the core
The cartoon version:

1. Halo WIMPs crash into the Sun
2. Some lose enough energy in the scatter to be gravitationally bound
3. Scatter some more, sink to the core
4. Annihilate with each other, producing neutrinos
Finding dark matter with neutrino telescopes

The cartoon version:

1. Halo WIMPs crash into the Sun
2. Some lose enough energy in the scatter to be gravitationally bound
3. Scatter some more, sink to the core
4. Annihilate with each other, producing neutrinos
5. Propagate + oscillate their way to the Earth, convert into muons in ice/water
Finding dark matter with neutrino telescopes

The cartoon version:

1. Halo WIMPs crash into the Sun
2. Some lose enough energy in the scatter to be gravitationally bound
3. Scatter some more, sink to the core
4. Annihilate with each other, producing neutrinos
5. Propagate+oscillate their way to the Earth, convert into muons in ice/water
6. Look for Čerenkov radiation from the muons in IceCube, ANTARES, etc
The IceCube Neutrino Observatory

- 86 strings
- 1.5–2.5 km deep in Antarctic ice sheet
- \(\sim 125 \) m spacing between strings
- \(\sim 70 \) m in DeepCore (10\(\times \) higher optical detector density)
- 1 km\(^3\) instrumented volume (1 Gton)
The IceCube Neutrino Observatory

- 86 strings
- 1.5–2.5 km deep in Antarctic ice sheet
- \(\sim 125 \) m spacing between strings
- \(\sim 70 \) m in DeepCore (10× higher optical detector density)
- 1 km\(^3\) instrumented volume (1 Gton)

Graphs showing predicted signal events and log\(10(\sigma_{SD,p}/\text{cm}^2)\) with IC22 × 100, flat priors, CMSSM \(\mu > 0 \), and marginalized posterior.

PS, Savage, Edsjö & The IceCube Collaboration, arxiv:1207.0810
Gamma-rays from dark matter

- 3 main gamma-ray channels:
Gamma-rays from dark matter

- 2 photons (or Z+photon): monochromatic lines
- Internal bremsstrahlung (FSR + VIB)
- Continuum from secondary decay

3 main gamma-ray channels:
- Monochromatic lines

Pat Scott – Oct 5 – University of Oslo

The standard model of cosmology: ΛCDM
Gamma-rays from dark matter

- 2 photons (or Z+photon): monochromatic lines
- Internal bremsstrahlung: hard gamma-ray spectrum

3 main gamma-ray channels:
- monochromatic lines
- internal bremsstrahlung (FSR + VIB)
3 main gamma-ray channels:
- monochromatic lines
- internal bremsstrahlung (FSR + VIB)
- continuum from secondary decay
\[\Phi \propto \text{annihilation rate} \propto \rho_{\text{DM}}^2 \]

Likely targets:

- Galactic centre - large signal, large BG
- Galactic halo - moderate signal, moderate BG
- Dwarf galaxies - low statistics, low BG
- Clusters/extragalactic diffuse - large modelling uncertainties, low signal, low BG
- Dark clumps - low statistics, low BG
 Targets

\[\Phi \propto \text{annihilation rate} \propto \rho_{\text{DM}}^2 \]

Likely targets:
- Galactic centre - large signal, large BG
- Galactic halo - moderate signal, moderate BG
- Dwarf galaxies - low statistics, low BG
- Clusters/extragalactic diffuse - large modelling uncertainties, low signal, low BG
- Dark clumps - low statistics, low BG
Targets

- $\Phi \propto \text{annihilation rate} \propto \rho_{\text{DM}}^2$

Likely targets:
- Galactic centre - large signal, large BG
- Galactic halo - moderate signal, moderate BG
- Dwarf galaxies - low statistics, low BG
- Clusters/extragalactic diffuse - large modelling uncertainties, low signal, low BG
- Dark clumps - low statistics, low BG

The standard model of cosmology: ΛCDM
Targets

- $\Phi \propto$ annihilation rate $\propto \rho_{DM}^2$

Likely targets:

- Galactic centre - large signal, large BG
- Galactic halo - moderate signal, moderate BG
- dwarf galaxies - low statistics, low BG
- clusters/extragalactic diffuse - large modelling uncertainties, low signal, low BG
- dark clumps - low statistics, low BG
 Targets

- $\Phi \propto$ annihilation rate $\propto \rho_{DM}^2$

Likely targets:
- Galactic centre - large signal, large BG
- Galactic halo - moderate signal, moderate BG
- dwarf galaxies - low statistics, low BG
- clusters/extragalactic diffuse - large modelling uncertainties, low signal, low BG
- dark clumps - low statistics, low BG
Cosmological Models
CDM – Background
CDM – Selected results
Indirect detection
Multimessenger particle physics: global fits
Effects of dark matter on stars

Targets

\[\Phi \propto \text{annihilation rate} \propto \rho_{\text{DM}}^2 \]

Likely targets:

- Galactic centre - large signal, large BG
- Galactic halo - moderate signal, moderate BG
- dwarf galaxies - low statistics, low BG
- clusters/extragalactic diffuse - large modelling uncertainties, low signal, low BG
- dark clumps - low statistics, low BG

Pat Scott – Oct 5 – University of Oslo
The standard model of cosmology: \(\Lambda \)CDM
Targets

- $\Phi \propto$ annihilation rate $\propto \rho_{\text{DM}}^2$

Likely targets:
- **Galactic centre** - large signal, large BG

The standard model of cosmology: ΛCDM

Hooper & Linden, arXiv:1110.0006
Cosmological Models
CDM – Background
CDM – Selected results
Indirect detection
Multimessenger particle physics: global fits
Effects of dark matter on stars

Targets

- $\Phi \propto$ annihilation rate $\propto \rho_{DM}^2$

Likely targets:
- Galactic centre - large signal, large BG
- Galactic halo - moderate signal, moderate BG
- dwarf galaxies - low statistics, low BG

Scott et al. 2009
PS, Conrad, Edsjö et al, *JCAP* 2010
Targets

- $\Phi \propto \text{annihilation rate} \propto \rho_{DM}^2$

Likely targets:

- Galactic centre - large signal, large BG
- Galactic halo - moderate signal, moderate BG
- dwarf galaxies - low statistics, low BG
- clusters/extragalactic diffuse - large modelling uncertainties, low signal, low BG
- dark clumps - low statistics, low BG
An example of dark clumps: Ultracompact minihalos

Question
What is an *ultracompact* minihalo (UCMH)?

Answer
A DM halo that collapses shortly after matter-radiation equality. ‘Shortly’ means z_{collapse} is $O(100)$ or more (vs $z_{\text{eq}} \sim 3000$) \Rightarrow isolated collapse \Rightarrow formation by radial infall \Rightarrow very steep density profile $\rightarrow \rho \propto r^{-9/4}$ \Rightarrow excellent indirect detection targets. Also good lensing prospects.

The standard model of cosmology: ΛCDM

Pat Scott – Oct 5 – University of Oslo
Question

What is an *ultracompact* minihalo (UCMH)?

Answer

A DM halo that collapses shortly after matter-radiation equality
Question

What is an ultracompact minihalo (UCMH)?

Answer

A DM halo that collapses shortly after matter-radiation equality

‘Shortly’ means \(z_{\text{collapse}} \) is \(O(100) \) or more (vs \(z_{\text{eq}} \sim 3000 \))

\[\Rightarrow \text{isolated collapse} \]

\[\Rightarrow \text{formation by radial infall} \]

\[\Rightarrow \text{very steep density profile} \rightarrow \rho \propto r^{-9/4} \]

\[\Rightarrow \text{excellent indirect detection targets} \]

Also good lensing prospects

Scott & Sivertsson *Phys. Rev. Lett.* 2009

Lacki & Beacom *ApJL* 2010
An example of dark clumps: Ultracompact minihalos

Question

How would UCMHs be created?

Answer

- Large amplitude density perturbations in the early Universe (e.g. on small scales)
- Small-scale power in primordial perturbation spectrum (e.g. features in the potential associated with inflation)
- Phase transitions
- Other seeds (e.g. cosmic strings)
An example of dark clumps: Ultracompact minihalos

Question
How would UCMHs be created?

Answer
Large amplitude density perturbations in the early Universe (e.g. on small scales)

- Small-scale power in primordial perturbation spectrum (e.g. features in the potential associated with inflation)
- Phase transitions
- Other seeds (e.g. cosmic strings)
Limits on \mathcal{P}_R from gamma-ray searches for UCMHs \sim5 orders better than from PBHs
\implies strong limits on inflationary models
Implications for cosmology

Impacts on inflation:

Limits on non-Gaussianities:

- Hierarchical Scaling
 \[k = 2 \times 10^3 \text{ Mpc}^{-1} \]

- Excluded by UCMHs
- Excluded by PBHs

\[M_3 (k) \]

\[\log_{10} [P_{\delta, \text{Gaussian}} (k)] \]

- \(z_c = 200 \)
- \(z_c = 1000 \)

\[\alpha \equiv \frac{d \ln n_s}{d \ln k} \]

- Not visible
- Visible in \(\gamma \) rays

- Slow roll
- WMAP5
- WMAP7+SPT

- Scale-free spectrum

\[n_s \]

- \(m_\chi = 10 \text{ GeV} \)
- \(m_\chi = 1 \text{ TeV} \)
Outline

1. Cosmological Models
2. CDM – Background
 - Evidence and models
 - Dark matter detection
3. CDM – Selected results
 - Indirect detection
 - Multimessenger particle physics: global fits
 - Effects of dark matter on stars
Putting it all together

Base Observables
(relic density, B-physics, LEP, etc.)

Contours indicate 1σ and 2σ credible regions
Shading + contours indicate relative probability only, not overall goodness of fit
Putting it all together

Base Observables + XENON-100

Grey contours correspond to Base Observables only

Contours indicate 1σ and 2σ credible regions
Shading+contours indicate relative probability only, not overall goodness of fit
Putting it all together

Base Observables + XENON-100 + CMS 5 fb$^{-1}$

Grey contours correspond to Base Observables only

Contours indicate 1σ and 2σ credible regions
Shading + contours indicate relative probability only, not overall goodness of fit
Putting it all together

Base Observables + XENON-100 + CMS 5 fb⁻¹ + IC22 × 100

Grey contours correspond to Base Observables only

Contours indicate 1σ and 2σ credible regions
Shading + contours indicate relative probability only, not overall goodness of fit

IceCube-22 with 100× boosted effective area (kinda like final IceCube)
Outline

1. Cosmological Models
2. CDM – Background
 - Evidence and models
 - Dark matter detection
3. CDM – Selected results
 - Indirect detection
 - Multimessenger particle physics: global fits
 - Effects of dark matter on stars
Reminder:

The cartoon version:

1. Halo WIMPs crash into the Sun
2. Some lose enough energy in the scatter to be gravitationally bound
3. Scatter some more, sink to the core
4. Annihilate with each other, producing neutrinos
5. Propagate+oscillate their way to the Earth, convert into muons in ice/water
6. Look for Čerenkov radiation from the muons in IceCube, ANTARES, etc
The cartoon version:

1. Halo WIMPs crash into the Sun stars
2. Some lose enough energy in the scatter to be gravitationally bound
3. Scatter some more, sink to the core
4. Annihilate with each other, producing neutrinos

The standard model of cosmology: \(\Lambda \)CDM
Reminder:

The cartoon version:

1. Halo WIMPs crash into the Sun stars
2. Some lose enough energy in the scatter to be gravitationally bound
3. Scatter some more, sink to the core
4. Annihilate with each other, producing neutrinos + other energetic particles

The standard model of cosmology: ΛCDM
Reminder:

The cartoon version:

1. Halo WIMPs crash into the Sun
2. Some lose enough energy in the scatter to be gravitationally bound
3. Scatter some more, sink to the core
4. Annihilate with each other, producing neutrinos + other energetic particles
5. Particles dump their energy in the stellar core

Pat Scott – Oct 5 – University of Oslo

The standard model of cosmology: \(\Lambda \text{CDM} \)
The cartoon version:

1. Halo WIMPs crash into the Sun
2. Some lose enough energy in the scatter to be gravitationally bound
3. Scatter some more, sink to the core
4. Annihilate with each other, producing neutrinos + other energetic particles
5. Particles dump their energy in the stellar core
6. Stellar structure responds, star evolves accordingly
Stellar evolution with dark matter annihilation

log_{10}(\rho_x/\text{GeV cm}^{-3}) = -5
log_{10}(\rho_x/\text{GeV cm}^{-3}) = 9
log_{10}(\rho_x/\text{GeV cm}^{-3}) = 10
ZAMS

Luminosity, log_{10}(L/L_{\odot})

Effective (surface) temperature, log_{10}\left(\frac{T_{\text{eff}}}{K}\right)

Z = 0.01
Finding ‘dark stars’

- Best candidates have low masses, near Galactic Centre
- First stars also good targets
- Maybe visible with JWST (if lensed), or by impacts on reionisation

PS, Fairbairn, Edsjö, *MNRAS* 2009

The standard model of cosmology: ΛCDM
Summary

- ΛCDM currently rests on CDM being some new particle – but what??
- There are many complementary ways to find out!
- Indirect detection generally probes masses and annihilation channels
- Stellar evolution can test both annihilation and interactions with quarks
- Ultracompact minihalos present an exciting way to also probe cosmology at the same time
- The different probes can (and should) be put together into global fits to gain a consistent picture. This will be required for a credible detection to be claimed!
ΛCDM currently rests on CDM being some new particle – but what??

There are many complementary ways to find out!

Indirect detection generally probes masses and annihilation channels

Stellar evolution can test both annihilation and interactions with quarks

Ultracompact minihalos present an exciting way to also probe cosmology at the same time

The different probes can (and should) be put together into global fits to gain a consistent picture. This will be required for a credible detection to be claimed!
\[\Lambda \text{CDM} \] currently rests on CDM being some new particle – but what??

There are many complementary ways to find out!

Indirect detection generally probes masses and annihilation channels.

Stellar evolution can test both annihilation and interactions with quarks.

Ultracompact minihalos present an exciting way to also probe cosmology at the same time.

The different probes can (and should) be put together into global fits to gain a consistent picture. This will be required for a credible detection to be claimed!
Summary

- ΛCDM currently rests on CDM being some new particle – but what??
- There are many complementary ways to find out!
- Indirect detection generally probes masses and annihilation channels
- Stellar evolution can test both annihilation and interactions with quarks
- Ultracompact minihalos present an exciting way to also probe cosmology at the same time
- The different probes can (and should) be put together into global fits to gain a consistent picture. This will be required for a credible detection to be claimed!
Summary

- ΛCDM currently rests on CDM being some new particle – but what??
- There are many complementary ways to find out!
- Indirect detection generally probes masses and annihilation channels
- Stellar evolution can test both annihilation and interactions with quarks
- Ultracompact minihalos present an exciting way to also probe cosmology at the same time
- The different probes can (and should) be put together into global fits to gain a consistent picture. This will be required for a credible detection to be claimed!
\(\Lambda\)CDM currently rests on CDM being some new particle – but what??

There are many complementary ways to find out!

Indirect detection generally probes masses and annihilation channels

Stellar evolution can test both annihilation and interactions with quarks

Ultracompact minihalos present an exciting way to also probe cosmology at the same time

The different probes can (and should) be put together into global fits to gain a consistent picture. This will be required for a credible detection to be claimed!
Extras 1: DarkStars code

- Lots of options and switches: different velocity distributions, widths, stellar orbits, WIMP conductive transport / internal distribution schemes, particle data, stellar masses and metallicities, numerical options...

- Save and restart - good for evolving part-way then trying different late-stage scenarios

- DarkStars 2.0 coming soon: conversion to full $Z = 0$ (new opacities, equation of state) – DarkStars 1.03 can only do $Z = 0$ on pre-MS

- Future options for expansion to include alternative form factors and/or WIMP evaporation

- DarkStars 1.03 publicly available from http://www.physics.mcgill.ca/~patscott/darkstars

Pat Scott – Oct 5 – University of Oslo

The standard model of cosmology: ΛCDM
Model: focus has mostly been on the Constrained MSSM (CMSSM)

- GUT boundary conditions on soft SUSY breaking parameters such that only 4 free parameters and 1 sign remain
- includes the simplest implementation of mSUGRA

\[m_0 \quad \text{scalar mass parameter} \]
\[m_1^2 \quad \text{gaugino mass parameter} \]
\[\tan \beta \quad \text{ratio of Higgs VEVs} \]
\[A_0 \quad \text{trilinear coupling} \]
\[\text{sgn } \mu \quad \text{Higgs mass parameter} \]
(\(+ve \text{ in our scans}\))

Just a testbed framework – all techniques are applicable to any MSSM parameterisation