1. Dynamic, Part I

1.1 Newton's Laws

N1 1st law \(v = \text{const} \) for body if \(F = 0 \)

N2 2nd law \(\frac{dv}{dt} = F \) Note: other \(p = m v \)

N3 3rd law \(F_1 = -F_2 \)

\[\leftrightarrow \]

\(B_1 \quad F_1, \quad B_2 \quad F_2 \)

Newton's law not valid in all coord. systems ("frames")

Initial frame: Frame in which Newton's eq. are valid

A: What is an initial frame?

Newton's absolute space

HW1: 1) What is absolute space?

4) Is concept of absolute space consistent with N3?

HW2: F2 moves uniformly w.r.t. F2

F1 install \(\rightarrow \) F2 install

A: What is absolute space?
1. 1st law: universality
 Every particle has the same inertial frame

2. 2nd law: universal response to any force
 \[a = \frac{F}{m} \]
 \[F = m a \] is a vector equation

3. System of point particles with fixed masses
 3rd law: total momentum conserved
 \[p_i = m_i v_i \]
 \[i = \text{index, refer to ith particle} \]

\[F_{12} = F_{21} \]

\[F_{12} = G \frac{m_1 m_2}{r^2} = F_{21} \]

\[m_1 = G \frac{m_2}{r^2} \]

\[m_1 \] gravitational mass

\[m_2 \] producer force field

\[\text{sketch} \]
Galileo: universality of gravity

[sketch] feather/stone

\[\frac{m_1 a_1}{m_2} = G \frac{m_1 m_2}{r^2} \]

universality \(\rightarrow \) \(m^F = m^G \)

Q: why?

A: lead to Einstein's GR

Q: why a mystery?

A: very different from EM

\[F = \frac{q_1 q_2}{r^2} \] charge

\[0 \quad \text{proton} \quad 0 \quad \text{neutron} \]

\[0 \quad \text{charge 1} \quad 0 \quad \text{charge 0} \]

same mass

different E field

different E force
1.2 Dynamic Systems

Consider particle moving in 1d

\[F = ma \]

\[\dot{q} = \frac{dq}{dt} \text{ velocity} \]

\[a = \frac{d^2 q}{dt^2} \text{ acceleration} \]

\[F = F(q, \dot{q}, t) \]

(E1) \[m \frac{d^2 q}{dt^2} = F(q, \dot{q}, t) \] ordinary differential equation second order dynamical system

Questions:
- Who has not seen DE?
- Are linear DE easy?
- Is linear DE hard?
- Can we find exact solutions?

Example: spring q = displacement

\[F_{q1} = -kq \]

\[m \ddot{q} = -kq \]

Simple DE: solution exponential

d = \text{exp}

d = \text{power law}

Analyze: \[q(t) = e^{\frac{w^2}{2m}t} \]

\[m \frac{d^2 q}{dt^2} = -k \quad d = -\left(\frac{k}{m} \right) \Rightarrow d = \pm iw \]
Ex: \(F(q, t) = +k t^{-2} \quad q \)
\[m \ddot{q} = +k t^{-2} q \]

exponential: not a solution

parabolic: \(q(t) = t^a \)
\[m \dot{d}^2 = +k \quad d = \pm \left(\frac{1}{m} \right)^{1/2} \]

Def: dynamical system autonomous if \(\frac{dF}{dt} = 0 \)

Q: Who have not seen partial derivatives?

Def: \(p = \hbar q \) momentum

Second order DE (E1) can be written as a pair of coupled first order DE
\[
\begin{align*}
\dot{q} &= \frac{p}{m} \\
p &= F(q, p, t)
\end{align*}
\]

\[x = (q, p) \text{ phase space} \in \mathbb{R}^2 \in \mathbb{R}^{2n} \]

\[q \text{ configuration space} \in \mathbb{R} \in \mathbb{R}^n \quad q_i \]

\[p \text{ momentum space} \in \mathbb{R} \in \mathbb{R}^n \quad p_i \]

\[n = 3 \quad 1 \text{ particle in 3d} \]
\[3 \text{ particles in 1d} \]

\[m > 3 \quad n \text{ particles in 1d} \]
\[\forall m \neq 3 \text{ in } 3d \]
Consider a particle in 1-d of mass m_i and $\mathbf{F}_i = (F_1, \ldots, F_n)$

$$\dot{q}_i = \frac{F_i}{m_i}$$

$$\dot{p}_i = F_i q_i - g(q_i)$$

E.g. grav. force between 2 particles

Flow in phase space

Ex spring $q = \frac{p}{m}$

$$\dot{p} = -kq$$

Start at rest

Start at equilibrium with push

Resulting orbit

Ex $m = k = 1$ $\dot{q} = p$ $\dot{p} = -q$

Procedure:
- Take grid of points in phase space
- At each pt, draw tangent vector
- Trajectory from any starting pt.
 - Fllows a trajectory which at all times is parallel to \mathbf{F} vectors
Consider initial time s, initial phase space point x_0. Evolve (E2) with time $t > s$:

$$x = \phi_{t-s}(x)$$

$\phi_t : \mathbb{R}^2 \to \mathbb{R}^2$ is the flow of a dynamical system.

Note: If F is autonomous, then $\phi_{t-s} = \phi_{t-s}$.

Local existence and Global uniqueness \(\phi(t) \) solution of (E2).

Then if $F : \mathbb{R}^2 \to \mathbb{R}^2$ is continuous and differentiable,

- for all $s \in \mathbb{R}$
- for all $y \in \mathbb{R}^2$
- for all U innbh y in \mathbb{R}^2

such that flow exists and is unique locally in time (J) and phase space (U).

$$x = \phi_{t-s}(y) \text{ exists } \forall t \in J \forall x \in U$$

and

i) $\phi_0(y) = y$

ii) $\frac{d}{dt} \phi_{t-s}(y) = F(\phi_{t-s}(y))$

iii) $\phi_{t-s}(t)$ is C^1 in t, y

Note: Theorem generalizes to many d.o.f. systems.
Ex. Spring \[\dot{q} = p \]
\[p = -q \] (ps sketch)

Ex. "Double well" \[F(q) = -4q(q^2 - 1) \]

Spring: \[F = 0 \text{ at } q = 0 \]

Well: \[F = 0 \text{ at } q = 0, \pm 1 \]

\[q \]
\[\downarrow \]
\[\uparrow \]
\[\downarrow \]
\[\uparrow \]
\[\downarrow \]
\[\uparrow \]

\[\text{about } (q) = (0) \]

\[\text{about } (q) = (0) \rightarrow F = -(q^2 - 1) \]

\[\text{about } (q) = (-1) \text{ symmetry} \]

Interpretation: gravity on surface of earth
\[V(q) = q^2 \]
\[F = -\frac{dV}{dq} \]

\[V = (q-1)(q+1)^2 \text{ double well} \]
Ex: system with friction

\[\dot{q} = -\gamma \dot{p} - q \quad 0 < \gamma \ll 1 \]

\[\ddot{q} = \pm \gamma q - q \quad 0 < \gamma \ll 1 \]

Ex: system with antifriction

\[\dot{p} = -\gamma \dot{q} - q \]

\[\ddot{p} = \gamma p - q \]

Stability

\[\text{DUE: \ if \ } \int_{t_0}^{t_1} (\dot{q})^2 \, dt \leq \frac{\gamma}{\gamma + 1} \]

Ex: spring: \[(\dot{q}) = (0) \] \text{ is fixed } \dot{p}.

\[(\dot{p}) = (0) \]

double well: \[(\dot{q}) = (0, 0, 0) \]

unstable \quad stable
Mathematical description of stability:

Phase space vector

\[\| \mathbf{v} \| \text{ length of vector in } \mathbb{R}^2 \]

Def: A point \(x_0 \) in phase space is a stable fixed point under the flow \(\phi_{t,s} \) if

\[\forall \varepsilon > 0 \\exists \delta > 0 \text{ such that if } \| x_0 \| < \delta \]

\[\| \phi_{t,s}(x) - x_0 \| < \varepsilon \text{ for } t > s, s > 0 \]

- Spring: \((0)\) stable
- Double well: \((0)\) unstable

N.B. give the arguments

Potential

a) particle in 1 d, position \(q \)

\[F(q), \]

\[v = \dot{q}, \]

\[m \frac{d}{dt} \dot{q} = F, \]

\[m \frac{d^2 q}{dt^2} = \frac{d}{dq} m \frac{dv}{dt} \]

Consider motion from 0 to \(q \)

\[m \int dq \frac{dv}{dq} = \int F dq \]

\[\frac{1}{2} m \int dq \left(\frac{dv}{dq} \right)^2 = \frac{1}{2} m v^2 \]

\[q_0 = E(q) - E_k(q_0) \]
Ex: Spring
\[F = -kx \]
\[V = \frac{1}{2} kx^2 \]

Kinetic energy
\[E_k = \frac{1}{2} mv^2 \]

Potential energy
\[V(q_1) = -\int F (q) dq' \text{ potential energy} \]

relative to \(q = 0 \)

Note: \(F(q) = -\frac{dV}{dq} \)

Note: \(F = F(q) \Rightarrow E_{\text{total}} = E_k + V \text{ conserved} \)

4) n: particles with central force \((m \text{ 3 Li}) \)

\[F_i = \frac{m_i}{m} \sum_{i=1}^{n} \frac{F_{ij} (q_i - q_j)}{r_{ij}} = F_i \]

\[F_{ij} (q_i, q_j) = \frac{q_i - q_j}{r_{ij}^3} \]

central force system

\[F_{ij} = \text{Newtonian gravity} \]

\[\rightarrow ~ \Rightarrow \leq 0 \]

\[\frac{m_1}{m} \]

\[f_{12} = f_{21} = -G \frac{m_1 m_2}{r^2}, \quad r = |q_1 - q_2| \]

Theorem: For an n-particle system with central forces \(F_i \) that create a potential function \(V(q_1, q_m) \) such that

\[F_i = -\frac{\partial V}{\partial q_i} \]

proved by construction
\[V = \sum_{1 \leq i < j \leq n} V_{ij} (q_i - q_j) - \int dr f_{ij} (r) \]

\[\frac{3}{4 \pi} \sum_{1 \leq i < j \leq n} V_{ij} (q_i - q_j) = \delta_{ij} (q_i - q_j) \frac{q_i - q_j}{|q_i - q_j|} \]

Ex 2 particles connected by springs

\[\begin{array}{c}
 \begin{array}{c}
 q_1 \rightarrow d \\
 q_2 \rightarrow 2d
 \end{array}
 \\
 \end{array} \]

\[V(q_1, q_2) = \frac{1}{2} k q_1^2 + \frac{1}{2} k (q_2 - q_1)^2 + \frac{1}{2} k (d - q_2)^2 \]

\[m_1 \ddot{q}_1 = -\frac{d}{dq_1} V = -k q_1 + k (q_2 - q_1) \]

\[m_2 \ddot{q}_2 = -\frac{d}{dq_2} V = -k (q_2 - q_1) + k (d - q_2) \]

stable fixed point

\[q_2 = 2q_1 \]

\[q_1 = \frac{1}{3} d \]

\[q_2 = \frac{2}{3} d \]

Linearization

Ex double well

\(F(q) = -4q (q^2 - 1) = -4q (q + 1)(q - 1) \)

sketch of plot

focus \(d \times \) near \((0) \)

\[q = \hat{q} + 1 \]

\[|q| \ll 1 \]

\[F(q) = -4(1 + \hat{q}) \hat{q} (2 + \hat{q}) = -8\hat{q} + O(\hat{q}^2) \]

\[\ddot{q} = -8\hat{q} \]
solution: $\hat{q}(t) = A\sin(\sqrt{8}t) + B\cos(\sqrt{8}t)$

$|A|/|B| \ll 1$

Procedure: * find fixed point (q_0)

* expand about fixed point $(\hat{q}) = (q_0 + \hat{q})$

* Taylor expand force to linear order in \hat{q} about q_0

Express well, expand about unstable fixed pt. (\bar{q})

$(\hat{q}) - (q) = \begin{vmatrix} 1 \end{vmatrix} \ll 1$

$F(q) = + 4q + O(q^2)$

$\bar{q} = 4q$

$q_{AB} = Ae^{-2t} + Be^{-2t}$

$|A|, |B| \ll 1$

Linearization breaks down once $|2t| \gg 1$

Hooke's Law: Any dynamical system can be linearized about a stable fixed point and solutions of linearized equations is good approximation for all times.

Procedure: at the level of potential

* find fixed point (q_0)

* expand about fixed pt. $(\hat{q}) = (q_0 + \hat{q})$
* Taylor expand V to 2nd order in \hat{q}

Ex:

$$V(q) = (q-1)^2(q+1)^2$$

$$q_0 = 1 \quad q = 1 + \hat{q}$$

$$V(q) = \hat{q}^2(2+\hat{q})^2 = 4 \hat{q}^2 + O(\hat{q}^3)$$

$$F(q) = -\frac{dV}{dq} = -8\hat{q}$$

$$\hat{q} = -8\hat{q} \quad \text{as before}$$