Problem Set 4 (for Week 4)

Warm-up exercises:

Black-body radiation (Warm-up I): Show that the observed momentum of a photon emitted by black-body radiation is proportional to the temperature of the radiation.

Photon redshifting in an expanding universe (Warm-up II): Show that the momentum of a photon p in an expanding FRW universe redshifts as $p \propto a^{-1}$ (this is purely a background calculation, so no perturbations are needed).

The metric potential and ISW I: In class we discussed the ISW effect. Here we want to better understand some of the associated phenomenology. Consider the equations

$$
\ddot{\delta} + 2H\dot{\delta} - \frac{3}{2}\Omega_m H^2 \delta = 0
$$

$$
k^2 \Phi = 4\pi G a^2 \rho_m \delta
$$

Solve the first equation in an expanding FRW universe (computing the density perturbation $\delta(a)$ and $\delta(t)$) for the cases of matter-domination ($\Omega_m \sim 1$) and Λ-domination ($\Omega_m \ll 1$). When do perturbations grow and how quickly? How does the gravitational potential Φ evolve in both cases? Does it grow/decay/stay constant with time? What does this mean for the ISW term we computed? Will there be a negative or a positive correlation between observed hot spots in the CMB with observed (foreground) galaxies? (think about CMB photons entering and leaving the gravitational well of a given galaxy on the way to our detectors)

The metric potential and ISW II (optional): What changes, if (during Λ-domination) the above Poisson equation is modified to

$$
k^2 \Phi = 4\pi G a^2 \mu(a) \rho_m \delta,
$$

where $\mu = 1 + \Omega_\Lambda a^2$? Assume the solution for δ is as before. Qualitatively, how does Φ evolve now? (Consider late times $t \to \infty$) How does this affect the ISW term? How about the above CMB-galaxy correlations?

Perturbative connection coefficients: For the metric

$$
ds^2 = a^2(\tau) \left[-(1 + 2\Phi) d\tau^2 + (1 - 2\Psi) \delta_{ij} dx^i dx^j \right]
$$

compute the connection coefficients Γ^0_{00}, Γ^0_{ij} and Γ^0_{ij} up to linear order in the potentials Φ, Ψ. Use this to verify the following relation (which we used in calculating perturbed photon geodesics in class)

$$
\Gamma^0_{\mu\nu} \frac{P^\mu P^\nu}{p^2} (1 + 2\Phi) = -2\mathcal{H} + \Psi - \dot{\Phi} - 2p^\nu \partial_i \Phi,
$$

where a dot denotes a derivative wrt. conformal time τ and $\partial_i \equiv \partial/\partial x^i$.
Baryon loading: Here we want to understand the effect of baryons on the CMB spectrum better. We have the following evolution equation for Θ:

$$c_s^2 \frac{\partial}{\partial \tau} (c_s^{-2} \dot{\Theta}) + c_s^2 k^2 \Theta = -\frac{k^2}{3} \Psi$$

and assume Φ, Ψ, R are all constant (notation as in the class) and $c_s^2 = 1/(3 + 3R)$. Can you re-phrase this in the form $\ddot{X} + c_s^2 k^2 X = 0$? What is X? Write down the equation of motion for the position of a mass m attached to a spring with spring constant k in a constant gravitational field. How does the amplitude and zero point of the oscillations shift, when the mass changes? What does this mean for the effect of baryons on Θ?

The effect of damping: In the class we considered an evolution equation for the photon density perturbation in a photon-baryon fluid. The friction term in that equation leads to a damping of oscillations. To better understand how this works, consider the damped harmonic oscillator

$$m \ddot{x} + b \dot{x} + kx = 0.$$

Solve this when $k/m > b^2/(4m^2)$. What is the frequency of oscillations? How does the solution differ from the $b = 0$ case? What else changes when $b \neq 0$, apart from the frequency? What does this imply for the effect of the friction term for the photon density perturbation?