1/2. Consider the Mathieu equation discussed in class

\[\ddot{\chi}_k + (k^2 + g^2 \sigma^2 \cos(mt))\chi_k = 0, \]

where \(\sigma \) is a mass scale, \(g \ll 1 \) is a dimensionless coupling constant and \(m \) is a frequency. Find the resonance bands of the system, i.e. the values of \(k \) for which the equation has exponentially increasing solutions.

3. For an oscillating inflaton \(\varphi \) background (in the context of large field inflation), the equation of motion for a massless field \(\chi \) coupled to \(\varphi \) as discussed in class is an equation of Mathieu type with a very large coupling constant. In this case there is broad parametric resonance. Using the adiabaticity condition discussed in class, determine the range of \(k \) values for which there is resonance.

4. In the above case, verify that there is a range of \(k \) values for which the expansion of space can be neglected.

5/6. In class I mentioned the tachyonic resonance which appears if the field \(\chi \) is coupled to \(\varphi \) with a negative coupling constant, i.e. the interaction Lagrangian is

\[\mathcal{L}_I = \frac{1}{2} g \varphi^2 \chi^2, \]

where \(g \) is a positive constant. In order that the system is stable, one needs to assume the presence of a nonlinear term \(\lambda \chi^4 \) in the potential for \(\chi \). Assume that \(\lambda \) is a very small positive constant. Study the growth of fluctuations of \(\chi \) in this model (neglecting the expansion of space), discuss what back-reaction effects need to be considered, and estimate how long the resonance of \(\chi \) persists until back-reaction effects become important.