The Virasoro fusion kernel and its applications

Yan Gobeil

McGill University

November 26th, 2018
Based on arXiv: 1811.05710 [hep-th]

Quantum Regge Trajectories and the Virasoro Analytic Bootstrap

Scott Collier, Yan Gobeil, Henry Maxfield, Eric Perlmutter

\(^{\text{Ta}} \) Jefferson Physical Laboratory, Harvard University, Cambridge, MA 02138, USA
\(^{\text{Tb}} \) Department of Physics, McGill University, Montreal, QC H3A 2T8, Canada
\(^{\text{Gb}} \) Department of Physics, University of California, Santa Barbara, CA 93106, USA
\(^{\text{Sb}} \) Walter Burke Institute for Theoretical Physics, Caltech, Pasadena, CA 91125, USA

scollier@g.harvard.edu, yan.gobeil@mail.mcgill.ca, hmaxfield@physics.ucsb.edu, perl@caltech.edu
The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits
Outline

1. The lightcone bootstrap
2. The fusion kernel
3. Kernel and CFT data
4. Large c limits
All CFTs have OPE (here scalar)

\[\phi(x)\phi(0) = \sum_{O} f_{\phi\phi\phi} C(x, \partial) O(0) \]
All CFTs have OPE (here scalar)

\[
\phi(x)\phi(0) = \sum_\mathcal{O} f_{\phi\phi\mathcal{O}} C(x, \partial)\mathcal{O}(0)
\]

Consider using it for 12 and 34 (s-channel) in \(d \geq 3\)

\[
\langle \phi(x_1)\phi(x_2)\phi(x_3)\phi(x_4) \rangle = \sum_\mathcal{O} f_{\phi\phi\mathcal{O}}^2 G_{\Delta\mathcal{O},\ell\mathcal{O}}^{\Delta\phi}(z, \bar{z}) \frac{(x_{12})^{2\Delta\phi}(x_{34})^{2\Delta\phi}}{}
\]

with \(G_{\Delta\mathcal{O},\ell\mathcal{O}}^{\Delta\phi}\) conformal blocks and \(z, \bar{z}\) conformal cross-ratios
Conformal block decomposition

All CFTs have OPE (here scalar)

$$\phi(x)\phi(0) = \sum_{\mathcal{O}} f_{\phi\phi\mathcal{O}} C(x, \partial) \mathcal{O}(0)$$

Consider using it for 12 and 34 (s-channel) in $d \geq 3$

$$\langle \phi(x_1)\phi(x_2)\phi(x_3)\phi(x_4) \rangle = \frac{\sum_{\mathcal{O}} f_{\phi\phi\mathcal{O}}^2 G_{\Delta\mathcal{O},\ell\mathcal{O}}^{\Delta\phi}(z, \bar{z})}{(x_{12})^{2\Delta\phi} (x_{34})^{2\Delta\phi}}$$

with $G_{\Delta\mathcal{O},\ell\mathcal{O}}^{\Delta\phi}$ conformal blocks and z, \bar{z} conformal cross-ratios

Write sum in terms of twist $\tau = \Delta - \ell$
Crossing symmetry

Can do 14 and 23 instead (t-channel) and get same thing

\[\sum_{O} f_{\phi \phi O}^2 G_{\tau, \ell}^{\Delta \phi} (z, \bar{z}) = \]

\[\left(\frac{z \bar{z}}{(1 - z)(1 - \bar{z})} \right)^{\Delta \phi} \sum_{O'} f_{\phi \phi O'}^2 G_{\tau', \ell'}^{\Delta \phi} (1 - z, 1 - \bar{z}) \]
Can do 14 and 23 instead (t-channel) and get same thing

\[\sum_{\mathcal{O}} f_{\phi\phi\mathcal{O}}^2 G_{\tau,\ell}^{\Delta_{\phi}}(z, \bar{z}) = \]

\[\left(\frac{z\bar{Z}}{(1-z)(1-\bar{z})} \right)^{\Delta_{\phi}} \sum_{\mathcal{O}'} f_{\phi\phi\mathcal{O}'}^2 G_{\tau',\ell'}^{\Delta_{\phi}'}(1-z, 1-\bar{z}) \]
Take $\bar{z} \to 1$, t-channel blocks behave as

$$G_{\Delta', \ell'}^\phi(1 - z, 1 - \bar{z}) \approx (1 - \bar{z})^{\frac{\tau'}{2}} K_{\Delta' + \ell'}(1 - z)$$

\Rightarrow t-channel dominated by identity!
Lightcone limit

Take $\bar{z} \to 1$, t-channel blocks behave as

$$G_{\Delta \phi}^{\Delta \phi}(1 - z, 1 - \bar{z}) \approx (1 - \bar{z})^{\frac{\tau}{2}} K_{\Delta \phi}^{\Delta \phi}(1 - z)$$

\Rightarrow t-channel dominated by identity!

Further take $z \to 0$, s-channel blocks behave as

$$G_{\tau \ell}^{\Delta \phi}(z, \bar{z}) \approx z^{\frac{\tau}{2}} \log (1 - \bar{z})$$
The Virasoro fusion kernel and its applications

Yan Gobeil

The lightcone bootstrap

The fusion kernel

Kernel and CFT data

Large c limits

Lightcone limit

Take $\bar{z} \to 1$, t-channel blocks behave as

$$G_{\tau', \ell'}^{\Delta \phi}(1 - z, 1 - \bar{z}) \approx (1 - \bar{z})^{\frac{\tau'}{2}} K_{\Delta' + \ell'}(1 - z)$$

\Rightarrow t-channel dominated by identity!

Further take $z \to 0$, s-channel blocks behave as

$$G_{\tau, \ell}^{\Delta \phi}(z, \bar{z}) \approx z^{\frac{\tau}{2}} \log (1 - \bar{z})$$

Crossing symmetry becomes

$$\sum_{\tau, \ell} f_{\phi\phi\phi}^2 z^{\frac{\tau}{2}} \log (1 - \bar{z}) = \frac{z^{\Delta \phi}}{(1 - \bar{z})^{\Delta \phi}} + \ldots$$
Double twist operators

Impossible to reproduce t-channel singularity with finite number of terms
Double twist operators

Impossible to reproduce t-channel singularity with finite number of terms

⇒ Need infinite family of operators with

\[\tau = 2\Delta \phi + 2n \]

for \(\ell \to \infty \)
Impossible to reproduce t-channel singularity with finite number of terms

⇒ Need infinite family of operators with

$$\tau = 2\Delta_\phi + 2n$$

for $\ell \rightarrow \infty$

Call these operators “double twist”, schematically

$$[\phi\phi]_{n,\ell} = \phi \Box^n \partial^\ell \phi$$
Double twist operators

Impossible to reproduce t-channel singularity with finite number of terms

⇒ Need infinite family of operators with

\[\tau = 2\Delta_\phi + 2n \]

for \(\ell \to \infty \)

Call these operators “double twist”, schematically

\[[\phi \phi]_{n,\ell} = \phi \Box^n \partial^\ell \phi \]

Explicitly inverting crossing gives the OPE coefficients
Mean Field Theory

t-channel identity \Rightarrow s-channel "double twists"
Mean Field Theory

t-channel identity \Rightarrow s-channel "double twists"

Reproduces Mean Field Theory: CFT with correlators given by Wick contractions, contain only double twist operators
t-channel identity \Rightarrow s-channel ”double twists”

Reproduces Mean Field Theory: CFT with correlators given by Wick contractions, contain only double twist operators

RESULT: Every CFT behaves as MFT at large spin
Mean Field Theory

t-channel identity \Rightarrow s-channel "double twists"

Reproduces Mean Field Theory: CFT with correlators given by Wick contractions, contain only double twist operators

RESULT: Every CFT behaves as MFT at large spin

Including subleading operators in t-channel gives corrections to OPE and anomalous dimensions

$$\gamma_{n,\ell} \sim \frac{1}{\ell^\tau}$$
Regge trajectories
Inversion formula

Can write 4-point function as

$$\langle \phi(x_1)\phi(x_2)\phi(x_3)\phi(x_4) \rangle \sim \sum_{\ell=0}^{\infty} \int_{\frac{d}{2}-i\infty}^{\frac{d}{2}+i\infty} d\Delta C(\Delta,\ell)G_{\Delta,\ell}(z,\bar{z})$$

where C has poles at physical operator with residues giving the OPE coefficients
Inversion formula

Can write 4-point function as

$$\langle \phi(x_1)\phi(x_2)\phi(x_3)\phi(x_4) \rangle \sim \sum_{\ell=0}^{\infty} \int_{\frac{d}{2}-i\infty}^{\frac{d}{2}+i\infty} d\Delta C(\Delta, \ell) G_{\Delta,\ell}(z, \bar{z})$$

where C has poles at physical operator with residues giving the OPE coefficients

Simon’s formula inverts this

$$C(\Delta, \ell) \propto \int_{0}^{1} \int_{0}^{1} dzd\bar{z} M_{\Delta,\ell}(z, \bar{z}) \text{dDisc}[\langle \phi(x_1)\phi(x_2)\phi(x_3)\phi(x_4) \rangle]$$
6j symbols

Inserting identity in inversion formula gives MFT result
6j symbols

Inserting identity in inversion formula gives MFT result

Inserting other operators gives corrections
6j symbols

Inserting identity in inversion formula gives MFT result

Inserting other operators gives corrections

Inversion of single block $= 6j$ symbol
6j symbols

Inserting identity in inversion formula gives MFT result

Inserting other operators gives corrections

Inversion of single block $= 6j$ symbol

\Rightarrow 6j symbols rewrite t-channel data into s-channel data
What is wrong in 2d?
Problems in 2d

What is wrong in 2d?

- Virasoro blocks not known
Problems in 2d

What is wrong in 2d?

- Virasoro blocks not known
- No twist gap (T, T^2, etc. have zero twist)
Problems in 2d

What is wrong in 2d?

- Virasoro blocks not known
- No twist gap (T, T^2, etc. have zero twist)

FKW already studied this in large c limit for HHLL with Virasoro vacuum block
What is wrong in 2d?

- Virasoro blocks not known
- No twist gap (T, T^2, etc. have zero twist)

FKW already studied this in large c limit for HHLL with Virasoro vacuum block

We will take finite c and reproduce their results.
Outline

1. The lightcone bootstrap
2. The fusion kernel
3. Kernel and CFT data
4. Large c limits
Conformal transformations factorize into holomorphic and anti-holomorphic
Conformal transformations factorize into holomorphic and anti-holomorphic

⇒ Conformal blocks factorize

\[G(z, \bar{z}) = \mathcal{F}(h|z)\bar{\mathcal{F}}(\bar{h}|\bar{z}) \]

with \(h = \Delta + \ell \) and \(\bar{h} = \Delta - \ell \)
Conformal transformations factorize into holomorphic and anti-holomorphic

\[
\Rightarrow \text{Conformal blocks factorize}
\]

\[
G(z, \bar{z}) = \mathcal{F}(h|z)\bar{\mathcal{F}}(\bar{h}|\bar{z})
\]

with \(h = \Delta + \ell \) and \(\bar{h} = \Delta - \ell \)

Crossing symmetry for \(\langle O_1(0)O_2(z, \bar{z})O_2(1)O_1(\infty) \rangle \) is now

\[
\sum_s (f_{12s})^2 \mathcal{F}_S(h_s, z)\bar{\mathcal{F}}_S(\bar{h}_s, \bar{z}) = \\
\sum_t f_{11t} f_{22t} \mathcal{F}_T(h_t, 1-z)\bar{\mathcal{F}}_T(\bar{h}_t, 1-\bar{z})
\]
Liouville notation

Need to use new notation:

\[c = 1 + 6Q^2 \quad , \quad Q = b + b^{-1} \quad , \quad h = \alpha(Q - \alpha) \]

\[(h, c) \Rightarrow (\alpha, b)\]
Liouville notation

Need to use new notation:

\[c = 1 + 6Q^2 \quad , \quad Q = b + b^{-1} \quad , \quad h = \alpha(Q - \alpha) \]

\[(h, c) \Rightarrow (\alpha, b)\]

Operators separate in two ranges:

Discrete: \(0 < h < \frac{c-1}{24} \iff 0 < \alpha < \frac{Q}{2}\)

Continuum: \(h \geq \frac{c-1}{24} \iff \alpha = \frac{Q}{2} + iP\)
Definition of the kernel

Rewrite t-channel (holomorphic) Virasoro blocks into s-channel blocks

\[\mathcal{F}_T(\alpha_t, 1 - z) = \int_C \frac{d\alpha_s}{2i} S_{\alpha_s \alpha_t} \mathcal{F}_S(\alpha_s, z) \]
Definition of the kernel

Rewrite t-channel (holomorphic) Virasoro blocks into s-channel blocks

\[\mathcal{F}_T(\alpha_t, 1 - z) = \int_C \frac{d\alpha_s}{2i} S_{\alpha_s\alpha_t} \mathcal{F}_S(\alpha_s, z) \]

Impressive that it is known since blocks themselves not known
Definition of the kernel

Rewrite t-channel (holomorphic) Virasoro blocks into s-channel blocks

\[\mathcal{F}_T(\alpha_t, 1 - z) = \int_C \frac{d\alpha_s}{2i} S_{\alpha_s \alpha_t} \mathcal{F}_S(\alpha_s, z) \]

Impressive that it is known since blocks themselves not known

Poles at \(\alpha_s = \alpha_1 + \alpha_2 + mb + nb^{-1} \) and reflexions \(\alpha \to Q - \alpha \)
Rewrite t-channel (holomorphic) Virasoro blocks into s-channel blocks

\[\mathcal{F}_T(\alpha_t, 1 - z) = \int_{C} \frac{d\alpha_s}{2i} \mathcal{S}_{\alpha\alpha_t} \mathcal{F}_S(\alpha_s, z) \]

Impressive that it is known since blocks themselves not known

Poles at \(\alpha_s = \alpha_1 + \alpha_2 + mb + nb^{-1} \) and reflexions \(\alpha \to Q - \alpha \)

- For \(\alpha_t = 0 \), single poles
- For \(\alpha_t \neq 0 \), double poles
When $\alpha_1 + \alpha_2 > \frac{Q}{2}$, C is simple
When $\alpha_1 + \alpha_2 > \frac{Q}{2}$, C is simple
Analytic structure

When $\alpha_1 + \alpha_2 < \frac{Q}{2}$, poles at $\alpha_m = \alpha_1 + \alpha_2 + mb$ can cross axis.
Analytic structure

When $\alpha_1 + \alpha_2 < \frac{Q}{2}$, poles at $\alpha_m = \alpha_1 + \alpha_2 + mb$ can cross axis
Support of the kernel

- For $\alpha_1 + \alpha_2 > \frac{Q}{2}$,

$$\mathcal{F}_T(\alpha_t) = \int_0^\infty dP \, S_{\alpha_s \alpha_t} \mathcal{F}_S \left(\alpha_s = \frac{Q}{2} + iP \right)$$
Support of the kernel

- For $\alpha_1 + \alpha_2 > \frac{Q}{2}$,

$$\mathcal{F}_T(\alpha_t) = \int_0^\infty dP \mathbb{S}_{\alpha_s \alpha_t} \mathcal{F}_S \left(\alpha_s = \frac{Q}{2} + iP \right)$$

- For $\alpha_1 + \alpha_2 < \frac{Q}{2}$,

$$\mathcal{F}_T(\alpha_t) = -2\pi \sum_m \text{Res}_{\alpha_s = \alpha_m} \left\{ \mathbb{S}_{\alpha_s \alpha_t} \mathcal{F}_S(\alpha_s) \right\}$$

$$+ \int_0^\infty dP \mathbb{S}_{\alpha_s \alpha_t} \mathcal{F}_S \left(\alpha_s = \frac{Q}{2} + iP \right)$$

with sum over $\alpha_m < \frac{Q}{2}$
Outline

1. The lightcone bootstrap
2. The fusion kernel
3. Kernel and CFT data
4. Large c limits
Rewrite t-channel into s-channel with kernel tells us what must be there in the s-channel to reproduce what appears in t-channel.
Rewrite t-channel into s-channel with kernel tells us what must be there in the s-channel to reproduce what appears in t-channel.

Consider $\alpha_1 + \alpha_2 < \frac{Q}{2}$ and $\bar{\alpha}_1 + \bar{\alpha}_2 > \frac{Q}{2}$ and individual t-channel exchange

$$\int d\alpha_s d\bar{\alpha}_s \rho_{12s} F_S(\alpha_s) \bar{F}_S(\bar{\alpha}_s) = \int_0^\infty d\bar{P} \bar{S}_{\alpha_s \alpha_t} F_S \left(\bar{\alpha}_s = \frac{Q}{2} + i\bar{P} \right)$$

$$f_{11t} f_{22t} \left[-2\pi \sum_m \text{Res} \left\{ S_{\alpha_s \alpha_t} F_S(\alpha_s) \right\} + \int_0^\infty dP S_{\alpha_s \alpha_t} F_S \left(\alpha_s = \frac{Q}{2} + iP \right) \right]$$
Virasoro MFT

What is needed to reproduce identity $\alpha_t = \bar{\alpha}_t = 0$?
Virasoro MFT

What is needed to reproduce identity $\alpha_t = \bar{\alpha}_t = 0$?

1. Family of operators with $\alpha = \alpha_m < \frac{Q}{2}$ (in discrete spectrum) for each $\bar{\alpha}$ in continuum ⇒ “Quantum” Regge trajectories

2. Operators with α and $\bar{\alpha}$ in continuum
What is needed to reproduce identity $\alpha_t = \bar{\alpha}_t = 0$?

1. Family of operators with $\alpha = \alpha_m < \frac{Q}{2}$ (in discrete spectrum) for each $\bar{\alpha}$ in continuum \Rightarrow “Quantum” Regge trajectories

2. Operators with α and $\bar{\alpha}$ in continuum

OPE coefficients of Regge operators given by

$$\rho_{12m} = -2\pi \bar{S}_{\bar{\alpha}I} \text{Res}_{\alpha_s = \alpha_m} S_{\alpha_s I}$$

This is called Virasoro Mean Field Theory!
Virasoro MFT

What is needed to reproduce identity $\alpha_t = \bar{\alpha}_t = 0$?

1. Family of operators with $\alpha = \alpha_m < \frac{Q}{2}$ (in discrete spectrum) for each $\bar{\alpha}$ in continuum \Rightarrow “Quantum” Regge trajectories

2. Operators with α and $\bar{\alpha}$ in continuum

OPE coefficients of Regge operators given by

$$\rho_{12m} = -2\pi \bar{S}_{\bar{\alpha}sI} \text{ Res}_{\alpha_s=\alpha_m} S_{\alpha_sI}$$

This is called Virasoro Mean Field Theory!
Assume other operators give small corrections

$$(\rho_{12m} + \delta \rho_{12m}) \mathcal{F}_S(\alpha_m + \delta \alpha_m) \tilde{\mathcal{F}}_S \approx \tilde{\mathcal{F}}_S (\rho_{12m} \mathcal{F}_S(\alpha_m) + \delta \rho_{12m} \mathcal{F}_S(\alpha_m) + \rho_{12m} \delta \alpha_m \partial \mathcal{F}_S(\alpha_m))$$
Assume other operators give small corrections

\[(\rho_{12m} + \delta \rho_{12m}) \mathcal{F}_S(\alpha_m + \delta \alpha_m) \bar{\mathcal{F}}_S \approx \bar{\mathcal{F}}_S (\rho_{12m} \mathcal{F}_S(\alpha_m) + \delta \rho_{12m} \mathcal{F}_S(\alpha_m) + \rho_{12m} \delta \alpha_m \partial \mathcal{F}_S(\alpha_m))\]

This leads to

\[\delta \alpha_m = f_{11t} f_{22t} \frac{\bar{S}_{\bar{\alpha}_m \bar{\alpha}_t}}{\bar{S}_{\bar{\alpha}_m}^{\bar{S}}} \frac{d\text{Res}}{\text{Res}} \frac{S_{\alpha_s \alpha_t}}{S_{\alpha_s}^{\bar{S}}}\]

\[\delta \rho_{12m} = -2\pi f_{11t} f_{22t} \bar{S}_{\bar{\alpha}_m \bar{\alpha}_t} \text{Res} \frac{S_{\alpha_s \alpha_t}}{S_{\alpha_s}^{\bar{S}}}\]

where dRes means the coefficient of double pole
Why dRes?

Taylor expanding double pole at $x = x_0$ gives

$$s(x)f(x) = \left(\frac{d\text{Res}(s)}{(x - x_0)^2} + \frac{\text{Res}(s)}{x - x_0} + s(x_0) \right)$$

$$\times \left(f(x_0) + (x - x_0)f'(x_0) \right)$$
Why dRes?

Taylor expanding double pole at $x = x_0$ gives

$$s(x)f(x) = \left(\frac{d\text{Res}(s)}{(x - x_0)^2} + \frac{\text{Res}(s)}{x - x_0} + s(x_0) \right)$$

$$\times \left(f(x_0) + (x - x_0)f'(x_0) \right)$$

$$= \frac{f(x_0) \ d\text{Res}(s)}{(x - x_0)^2} + \frac{f(x_0) \ \text{Res}(s)}{x - x_0} + f'(x_0) \ \text{Res}(s) + \ldots$$
Why dRes?

Taylor expanding double pole at $x = x_0$ gives

$$s(x)f(x) = \left(\frac{d\text{Res}(s)}{(x - x_0)^2} + \frac{\text{Res}(s)}{x - x_0} + s(x_0) \right) \times \left(f(x_0) + (x - x_0)f'(x_0) \right)$$

$$= \frac{f(x_0)\text{dRes}(s)}{(x - x_0)^2} + \frac{f(x_0)\text{Res}(s)}{x - x_0} + f'(x_0)\text{Res}(s) + \ldots$$

$$\Rightarrow \text{Res}(sf) = f(x_0)\text{Res}(s) + f'(x_0)\text{dRes}(s)$$
At large $\bar{\alpha}_s$

$$\delta \alpha_m \sim e^{-2\pi \bar{\alpha}_t \sqrt{\ell_s}}$$
Large spin asymptotics

At large $\bar{\alpha}_s$

$$\delta\alpha_m \sim e^{-2\pi\bar{\alpha}t\sqrt{\ell_s}}$$

\Rightarrow identity dominates at large spin!
Large spin asymptotics

At large $\bar{\alpha}_s$

$$\delta \alpha_m \sim e^{-2\pi \bar{\alpha}_t \sqrt{\ell_s}}$$

⇒ identity dominates at large spin!

Spectrum of Quantum Regge trajectories at large spin:

$$h_m = h_1 + h_2 + m - 2(\alpha_1 + mb)(\alpha_2 + mb) + m(m+1)b^2 + \delta h_m$$
Quantum Regge trajectories
Outline

1. The lightcone bootstrap
2. The fusion kernel
3. Kernel and CFT data
4. Large c limits
Global limit

Reproduce global results with $c \to \infty$ and h_i fixed
Global limit

Reproduce global results with $c \to \infty$ and h_i fixed

$$\Rightarrow \alpha = bh + O(b^3) \text{ as } b \to 0$$
Global limit

Reproduce global results with \(c \to \infty \) and \(h_i \) fixed

\[\alpha = bh + O(b^3) \text{ as } b \to 0 \]

Infinite number of trajectories with

\[h_m = h_1 + h_2 + m + O(b^2) \]
Global limit

Reproduce global results with \(c \to \infty \) and \(h_i \) fixed

\[\Rightarrow \alpha = bh + O(b^3) \text{ as } b \to 0 \]

Infinite number of trajectories with

\[h_m = h_1 + h_2 + m + O(b^2) \]

Checks:

1. Reproduce MFT from VMFT (exchange of identity)
2. Other t-channel reproduced
3. Next order in identity exchange gives \(T \)
Semiclassical limit

Again \(c \to \infty \) but some operators heavy \(h \sim c \)
Semiclassical limit

Again $c \to \infty$ but some operators heavy $h \sim c$

$\Rightarrow \alpha = \frac{Q}{2} + ib^{-1}p$ or $\alpha = \eta b^{-1}$ as $b \to 0$
Again $c \to \infty$ but some operators heavy $h \sim c$

$\Rightarrow \alpha = \frac{Q}{2} + ib^{-1}p$ or $\alpha = \eta b^{-1}$ as $b \to 0$

When $m \ll b^{-1} \sim \sqrt{c}$, $h_1 = O(c) < \frac{c}{24}$ and $h_2 = O(1)$, recover

$$h_m \approx h_1 + \sqrt{1 - \frac{24h_1}{c}}(h_2 + m)$$

same as FKW
Semiclassical limit

Again $c \to \infty$ but some operators heavy $h \sim c$

$\Rightarrow \alpha = \frac{Q}{2} + ib^{-1}p$ or $\alpha = \eta b^{-1}$ as $b \to 0$

When $m \ll b^{-1} \sim \sqrt{c}$, $h_1 = O(c) < \frac{c}{24}$ and $h_2 = O(1)$, recover

$$h_m \approx h_1 + \sqrt{1 - \frac{24h_1}{c}}(h_2 + m)$$

same as FKW

When further take $\frac{h_1}{c} \ll 1$, recover

$$h_m \approx h_1 + h_2 - \frac{12h_1h_2}{c}$$

which can be derived from inversion formula
Summary

1. Fusion kernel: write t-channel Virasoro block in terms of s-channel blocks
Summary

1. Fusion kernel: write t-channel Virasoro block in terms of s-channel blocks
2. VMFT: inversion of identity Virasoro block
Summary

1. Fusion kernel: write t-channel Virasoro block in terms of s-channel blocks
2. VMFT: inversion of identity Virasoro block
3. Quantum Regge Trajectories
Summary

1. Fusion kernel: write t-channel Virasoro block in terms of s-channel blocks
2. VMFT: inversion of identity Virasoro block
3. Quantum Regge Trajectories
4. Corrections to trajectories
Summary

1. Fusion kernel: write t-channel Virasoro block in terms of s-channel blocks
2. VMFT: inversion of identity Virasoro block
3. Quantum Regge Trajectories
4. Corrections to trajectories
5. Large c limits
Many other applications

1. Virasoro blocks at late time (information paradox)
2. Gravity interpretation
3. $z \rightarrow 1$ limit of Virasoro blocks
4. HHLL Virasoro blocks
5. 2d lightcone bootstrap